Abstract

Additive manufacturing (AM), owing to its unique layer-wise production method, can offer evident advantages such as faster production, lower cost, and less waste compared to traditional manufacturing (TM) technologies. The uses of AM in rapid tooling, prototyping, and manufacturing have been innovating the current manufacturing industry from the process level to the entire supply chain. Most existing research on AM is focused on process improvement and new materials, largely neglecting the potential economic and environmental benefits enabled by AM supply chains. This research investigates an innovative supply chain structure, i.e., the integrated production-inventory-transportation (PIT) structure that is uniquely enabled by AM because of its capability of fabricating the entire product with less or even no need for assembly and labor involvement. This paper quantifies and compares the greenhouse gas (GHG) emissions of TM and AM-enabled PIT supply chains. Since the manufacturing industry is a major source of GHG emissions in the U.S., it needs to be thoroughly studied to explore opportunities for reducing GHG emissions for environmental protection. Case study results suggest that a potential reduction of 26.43% of GHG emissions can be achieved by adopting the AM-enabled PIT supply chain structure. Sensitivity analysis results show that a 20% variation in GHG emission intensity (the amount of CO2eq emissions caused by generating a unit of electricity) can lead to a 6.26% change in the total GHG emissions from the AM-enabled PIT supply chain.

References

1.
Tan
,
J. H.
,
Wong
,
W. L. E.
, and
Dalgarno
,
K. W.
,
2017
, “
An Overview of Powder Granulometry on Feedstock and Part Performance in the Selective Laser Melting Process
,”
Addit. Manuf.
,
18
, pp.
228
255
.
2.
Peng
,
T.
,
Kellens
,
K.
,
Tang
,
R.
,
Chen
,
C.
, and
Chen
,
G.
,
2018
, “
Sustainability of Additive Manufacturing: An Overview on Its Energy Demand and Environmental Impact
,”
Addit. Manuf.
,
21
, pp.
694
704
.
3.
Zhao
,
D.
, and
Guo
,
W.
,
2020
, “
Shape and Performance Controlled Advanced Design for Additive Manufacturing: A Review of Slicing and Path Planning
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
010801
.
4.
Du
,
W.
,
Roa
,
J.
,
Hong
,
J.
,
Liu
,
Y.
,
Pei
,
Z.
, and
Ma
,
C.
,
2021
, “
Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091002
.
5.
Yang
,
Y.
, and
Li
,
L.
,
2018
, “
Cost Modeling and Analysis for Mask Image Projection Stereolithography Additive Manufacturing: Simultaneous Production with Mixed Geometries
,”
Int. J. Prod. Econ.
,
206
, pp.
146
158
.
6.
Laureijs
,
R. E.
,
Roca
,
J. B.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J. L.
, and
Fuchs
,
E. R. H.
,
2017
, “
Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081010
.
7.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021005
.
8.
Robbins
,
J.
,
Owen
,
S. J.
,
Clark
,
B. W.
, and
Voth
,
T. E.
,
2016
, “
An Efficient and Scalable Approach for Generating Topologically Optimized Cellular Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
(
Part B
), pp.
296
304
.
9.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
.
10.
Schneck
,
M.
,
Gollnau
,
M.
,
Lutter-Günther
,
M.
,
Haller
,
B.
,
Schlick
,
G.
,
Lakomiec
,
M.
, and
Reinhart
,
G.
,
2019
, “
Evaluating the Use of Additive Manufacturing in Industry Applications
,”
52nd CIRP Conference on Manufacturing Systems
,
Ljubljana, Slovenia
,
June 12–14
.
11.
Sarah
,
S.
, and
Cision
,
2019
,
The Global Additive Manufacturing Market is Expected to Grow to US 36.61 Billion by 2027 from US 8.44 Billion in 2018
.
12.
Ford
,
S.
, and
Despeisse
,
M.
,
2015
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Cleaner Prod.
,
137
, pp.
1573
1587.
13.
Durakovic
,
B.
,
2018
, “
Design for Additive Manufacturing: Benefits, Trends and Challenges
,”
Period. Eng. Nat. Sci.
,
6
(
2
), p.
179
.
14.
Liao
,
J.
, and
Cooper
,
D. R.
,
2021
, “
The Environmental Impacts of Metal Powder Bed Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
030801
.
15.
Marchese
,
K.
,
Haley
,
C.
, and
Crane
,
J.
,
2015
,
3D Opportunity for the Supply Chain. Additive Manufacturing Delivers
,
Deloitte University Press
,
Westlake, TX
.
16.
Attaran
,
M.
,
2017
, “
The Rise of 3D Printing: The Advantages of Additive Manufacturing Over Traditional Manufacturing
,”
Bus. Horiz.
,
60
(
5
), pp.
677
688
.
17.
Tang
,
Y.
,
Mak
,
K.
, and
Zhao
,
Y. F.
,
2016
, “
A Framework to Reduce Product Environmental Impact Through Design Optimization for Additive Manufacturing
,”
J. Cleaner Prod.
,
137
, pp.
1560
1572
.
18.
Jia
,
F.
,
Wang
,
X.
,
Mustafee
,
N.
, and
Hao
,
L.
,
2016
, “
Investigating the Feasibility of Supply Chain-Centric Business Models in 3D Chocolate Printing: A Simulation Study
,”
Technol. Forecast. Soc. Change
,
102
, pp.
202
213
.
19.
Li
,
Y.
,
Jia
,
G.
,
Cheng
,
Y.
, and
Hu
,
Y.
,
2017
, “
Additive Manufacturing Technology in Spare Parts Supply Chain: A Comparative Study
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1498
1515
.
20.
Sgarbossa
,
F.
,
Peron
,
M.
,
Lolli
,
F.
, and
Balugani
,
E.
,
2021
, “
Conventional or Additive Manufacturing for Spare Parts Management: An Extensive Comparison for Poisson Demand
,”
Int. J. Prod. Econ.
,
233
, p.
107993
.
21.
Böckin
,
D.
, and
Tillman
,
A. M.
,
2019
, “
Environmental Assessment of Additive Manufacturing in the Automotive Industry
,”
J. Cleaner Prod.
,
226
, pp.
977
987
.
22.
Huang
,
R.
,
Riddle
,
M.
,
Graziano
,
D.
,
Warren
,
J.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2016
, “
Energy and Emissions Saving Potential of Additive Manufacturing: The Case of Lightweight Aircraft Components
,”
J. Cleaner Prod.
,
135
, pp.
1559
1570
.
23.
Clemon
,
L.
,
Sudradjat
,
A.
,
Jaquez
,
M.
,
Krishna
,
A.
,
Rammah
,
M.
, and
Dornfeld
,
D.
,
2013
, “
Precision and Energy Usage for Additive Manufacturing
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
San Diego, CA
,
Nov. 15–21
.
24.
Jin
,
M.
,
Tang
,
R.
,
Ji
,
Y.
,
Liu
,
F.
,
Gao
,
L.
, and
Huisingh
,
D.
,
2017
, “
Impact of Advanced Manufacturing on Sustainability: An Overview of the Special Volume on Advanced Manufacturing for Sustainability and Low Fossil Carbon Emissions
,”
J. Cleaner Prod.
,
161
, pp.
69
74
.
25.
Cassia
,
R.
,
Nocioni
,
M.
,
Correa-Aragunde
,
N.
, and
Lamattina
,
L.
,
2018
, “
Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress
,”
Front. Plant Sci.
,
9
(
273
).
26.
Meinshausen
,
M.
,
Meinshausen
,
N.
,
Hare
,
W.
,
Raper
,
S. C. B.
,
Frieler
,
K.
,
Knutti
,
R.
,
Frame
,
D. J.
, and
Allen
,
M. R.
,
2009
, “
Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 °C
,”
Nature
,
458
(
7242)
, pp.
1158
1162
.
27.
Oertel
,
C.
,
Matschullat
,
J.
,
Zurba
,
K.
,
Zimmermann
,
F.
, and
Erasmi
,
S.
,
2016
, “
Greenhouse Gas Emissions From Soils—A Review
,”
Geochem.
,
76
(
3
), pp.
327
352
.
28.
Heller
,
M. C.
, and
Keoleian
,
G. A.
,
2015
, “
Greenhouse Gas Emission Estimates of U.S. Dietary Choices and Food Loss
,”
J. Ind. Ecol.
,
19
(
3
), pp.
391
401
.
29.
United States Environmental Protection Agency
,
2020
, “
Sources of Greenhouse Gas Emissions
,” https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
30.
Moomaw
,
W. R.
,
1996
, “
Industrial Emissions of Greenhouse Gases
,”
Energy Policy
,
24
(
10–11
), pp.
951
968
.
31.
Plambeck
,
E. L.
,
2012
, “
Reducing Greenhouse Gas Emissions Through Operations and Supply Chain Management
,”
Energy Econ.
,
34
(
Supplement 1
), pp.
S64
S74
.
32.
EPA
,
2017
,
Greenhouse Gases Equivalencies Calculator – Calculations and References
.
33.
Jira
,
C.
, and
Toffel
,
M. W.
,
2013
, “
Engaging Supply Chains in Climate Change
,”
Manuf. Serv. Oper. Manag.
,
15
(
4
), pp.
559
577
.
34.
Arıoğlu Akan
,
,
Dhavale
,
D. G.
, and
Sarkis
,
J.
,
2017
, “
Greenhouse Gas Emissions in the Construction Industry: An Analysis and Evaluation of a Concrete Supply Chain
,”
J. Cleaner Prod.
,
167
, pp.
1195
1207
.
35.
Sundarakani
,
B.
,
De Souza
,
R.
,
Goh
,
M.
,
Wagner
,
S. M.
, and
Manikandan
,
S.
,
2010
, “
Modeling Carbon Footprints Across the Supply Chain
,”
Int. J. Prod. Econ.
,
128
(
1
), pp.
43
50
.
36.
Modak
,
N. M.
,
Ghosh
,
D. K.
,
Panda
,
S.
, and
Sana
,
S. S.
,
2018
, “
Managing Green House Gas Emission Cost and Pricing Policies in a Two-Echelon Supply Chain
,”
CIRP J. Manuf. Sci. Technol.
,
20
, pp.
1
11
.
37.
Flower
,
D. J. M.
, and
Sanjayan
,
J. G.
,
2007
, “
Green House Gas Emissions Due to Concrete Manufacture
,”
Int. J. Life Cycle Assess.
,
12
(
5
), pp.
282
288
.
38.
Tao
,
X.
,
Mao
,
C.
,
Xie
,
F.
,
Liu
,
G.
, and
Xu
,
P. P.
,
2018
, “
Greenhouse Gas Emission Monitoring System for Manufacturing Prefabricated Components
,”
Automat. Constr.
,
93
, pp.
361
374
.
39.
He
,
B.
,
Liu
,
Y.
,
Zeng
,
L.
,
Wang
,
S.
,
Zhang
,
D.
, and
Yu
,
Q.
,
2019
, “
Product Carbon Footprint Across Sustainable Supply Chain
,”
J. Cleaner Prod.
,
241
, p.
118320
.
40.
Parashar
,
S.
,
Sood
,
G.
, and
Agrawal
,
N.
,
2020
, “
Modelling the Enablers of Food Supply Chain for Reduction in Carbon Footprint
,”
J. Cleaner Prod.
,
275
, p.
122932
.
41.
Santibanez-Gonzalez
,
E. D. R.
,
2017
, “
A Modelling Approach That Combines Pricing Policies With a Carbon Capture and Storage Supply Chain Network
,”
J. Cleaner Prod.
,
167
, pp.
1354
1369
.
42.
Leonzio
,
G.
, and
Zondervan
,
E.
,
2020
, “
Analysis and Optimization of Carbon Supply Chains Integrated to a Power to Gas Process in Italy
,”
J. Cleaner Prod.
,
269
, p.
122172
.
43.
Apsley
,
L. K.
,
Bodel
,
C. I.
,
Danton
,
J. C.
,
Reyes-Guerrero
,
E.
,
Hayden
,
S. R.
,
Kapila
,
S.
,
Lessard
,
E.
, and
Uhl
,
R. B.
,
2018
,
Vendor Interface for Item Delivery via 3D Manufacturing on Demand
.
44.
Khan
,
S. A. R.
, and
Yu
,
Z.
,
2019
,
Introduction to Supply Chain Management
,
EAI/Springer Innovations in Communication and Computing
,
Switzerland
.
45.
Özceylan
,
E.
,
Çetinkaya
,
C.
,
Demirel
,
N.
, and
Sabırlıoğlu
,
O.
,
2017
, “
Impacts of Additive Manufacturing on Supply Chain Flow: A Simulation Approach in Healthcare Industry
,”
Logist.
,
2
(
1
), p.
1
.
46.
Jiang
,
Z.
,
Gao
,
D.
,
Lu
,
Y.
,
Kong
,
L.
, and
Shang
,
Z.
,
2019
, “
Electrical Energy Consumption of CNC Machine Tools Based on Empirical Modeling
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
2255
2267
.
47.
Peng
,
T.
,
2017
, “
Energy Modelling for FDM 3D Printing From a Life Cycle Perspective
,”
Int. J. Manuf. Res.
,
11
(
1
), p.
1
.
48.
U.S. Energy Information Administration
,
2016
,
How Much Carbon Dioxide is Produced per Kilowatthour of U.S. Electricity Generation?
.
49.
Croezen
,
H.
,
Bijleveld
,
M.
, and
Sevenster
,
M.
,
2013
,
Natural Cork Bottle Stoppers: A Stopper on CO2 Emissions?
.
50.
Chen
,
K. W.
,
Lin
,
L. C.
, and
Lee
,
W. S.
,
2014
, “
Analyzing the Carbon Footprint of the Finished Bovine Leather: A Case Study of Aniline Leather
,”
Energy Procedia
,
61
, pp.
1063
1066
.
52.
U.S. Department of Energy
. “
Average Fuel Economy by Major Vehicle Category
,” https://afdc.energy.gov/data/10310.
You do not currently have access to this content.