Abstract

The maraging steel is an impeccable choice for aerospace applications due to its high strength and excellent toughness. Welding is importantly involved in fabricating various structures out of maraging steel. Gas tungsten arc welding (GTAW) is the most commonly adopted technique for joining maraging steel. However, the major concern regarding the welding of maraging steel is the formation of the reverted austenite phase in the fusion zone and the heat affected zone. This reverted austenite deteriorates the mechanical property performance of welded joints. The present study focuses on GTAW of 12 mm thick MDN 250 maraging steel. An attempt was made to suppress the reverted austenite by employing suitable post-weld heat treatments. Three different types of post-weld heat treatments were adopted, i.e, (i) direct aging (W-DA), (ii) solutionizing + aging (W-SA), and (iii) homogenizing + solutionizing + aging (W-HSA). The micrograph and XRD analysis of the fusion zone with W-DA and W-SA conditions reveal the presence of reverted austenite. The SEM/EDAX examination of the fusion zone of as-welded, W-DA, and W-SA conditions revealed micro-segregation of Ni, Mo, and Ti elements from the matrix to the grain boundaries. On the other hand, the W-HSA condition was free from micro-segregation and austenite reversion. Electron backscatter diffraction (EBSD) analysis was used to estimate the percentage of reverted austenite in the fusion zone. The tensile test shows the highest strength of 1721 MPa (UTS) in W-HSA conditions. Similarly, the microhardness of the W-HSA conditions depicts a higher hardness with an even distribution in the microhardness values across the weldment. Hence, considering both metallurgical and mechanical examination of the weldment, the W-HSA heat treatments give superior properties in the case of GTA welded MDN 250 grade maraging steel.

References

1.
Ituarte
,
I. F.
,
Salmi
,
M.
,
Papula
,
S.
,
Huuki
,
J.
,
Hemming
,
B.
,
Coatanea
,
E.
,
Nurmi
,
S.
, and
Virkkunen
,
I.
,
2020
, “
Surface Modification of Additively Manufactured 18% Nickel Maraging Steel by Ultrasonic Vibration-Assisted Ball Burnishing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071008
.
2.
Venkata Ramana
,
P.
,
Madhusudhan Reddy
,
G.
, and
Mohandas
,
T.
,
2008
, “
Microstructure, Hardness and Residual Stress Distribution in Maraging Steel Gas Tungsten Arc Weldments
,”
Sci. Technol. Weld. Join.
,
13
(
4
), pp.
388
394
.
3.
Sundaresan
,
S.
,
Manirajan
,
M.
, and
Nageswara Rao
,
B.
,
2010
, “
On the Fracture Toughness Evaluation in Weldments of a Maraging Steel Rocket Motor Case
,”
Mater. Des.
,
31
(
10
), pp.
4921
4926
.
4.
Madhusudhan Reddy
,
G.
, and
Srinivasa Rao
,
K.
,
2015
, “
Microstructure and Corrosion Behaviour of Gas Tungsten Arc Welds of Maraging Steel
,”
Def. Technol.
,
11
(
1
), pp.
48
55
.
5.
Hu
,
Z.
,
Yu
,
H.
, and
Pang
,
Q.
,
2020
, “
Investigation of Interfacial Layer for Friction Stir Welded AA7075-T6 Aluminum to DP1180 Steel Joints
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091002
.
6.
Li
,
C.
,
Ao
,
S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Cui
,
H.
, and
Luo
,
Z.
,
2020
, “
Effects of Postweld Heat Treatment on the Phase Transformation and Mechanical Behavior of NiTi Ultrasonic Spot Welded Joints With Al Interlayer
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101006
.
7.
Ao
,
S.
,
Huang
,
Y.
,
Du
,
H.
, and
Luo
,
Z.
,
2020
, “
Fluid Flow Mode of Nugget in Magnetically Assisted Resistance Spot Welding With Unequal Thickness Plates: Modeling and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011007
.
8.
Qi
,
L.
,
Li
,
F.
,
Zhang
,
Q.
,
Xu
,
Y.
,
Han
,
X.
, and
Li
,
Y.
,
2020
, “
Improvement of Single-Sided Resistance Spot Welding of Austenitic Stainless Steel Using Radial Magnetic Field
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
031004
.
9.
Carpenter
,
K.
, and
Tabei
,
A.
,
2020
, “
Optimization of the Weld Setup in Magnetically Assisted Laser Welding by Thermo-Magnetic Modeling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
034501
.
10.
Bag
,
S.
,
DiGiovanni
,
C.
,
Han
,
X.
, and
Zhou
,
N. Y.
,
2020
, “
A Phenomenological Model of Resistance Spot Welding on Liquid Metal Embrittlement Severity Using Dynamic Resistance Measurement
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031007
.
11.
Liu
,
C.
,
Liu
,
T.
,
Du
,
J.
,
Zhang
,
Y.
,
Lai
,
X.
, and
Shi
,
J.
,
2020
, “
Hybrid Nonlinear Variation Modeling of Compliant Metal Plate Assemblies Considering Welding Shrinkage and Angular Distortion
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
041003
.
12.
Murali
,
N.
,
Sokoluk
,
M.
,
Yao
,
G.
,
Pan
,
S.
,
De Rosa
,
I.
, and
Li
,
X.
,
2021
, “
Gas-Tungsten Arc Welding of Dissimilar Aluminum Alloys With Nano-Treated Filler
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081001
.
13.
Zhang
,
Y. M.
,
Yang
,
Y.-P.
,
Zhang
,
W.
, and
Na
,
S.-J.
,
2020
, “
Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110816
.
14.
Jose
,
B.
,
Manoharan
,
M.
, and
Natarajan
,
A.
,
2021
, “
Technology Development for Thick Section of Aerospace-Grade MDN 250 Weldment With Higher Weld Strength and Toughness by Suppressing Reverted Austenite Phase
,”
J. Mater. Eng. Perform.
,
4
(
31
), pp.
1828
1845
.
15.
Shamantha
,
C. R.
,
Narayanan
,
R.
,
Iyer
,
K. J. L.
,
Radhakrishnan
,
V. M.
,
Seshadri
,
S. K.
,
Sundararajan
,
S.
, and
Sundaresan
,
S.
,
2000
, “
Microstructural Changes During Welding and Subsequent Heat Treatment of 18Ni (250-Grade) Maraging Steel
,”
Mater. Sci. Eng. A
,
287
(
1
), pp.
43
51
.
16.
Rao
,
V. V.
,
Reddy
,
G. M.
, and
Raju
,
A. V. S.
,
2010
, “
Influence of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Gas Tungsten Arc Maraging Steel Weldments
,”
Mater. Sci. Technol.
,
26
(
12
), pp.
1459
1468
.
17.
Tariq
,
F.
,
Baloch
,
R. A.
,
Ahmed
,
B.
, and
Naz
,
N.
,
2010
, “
Investigation Into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments
,”
J. Mater. Eng. Perform.
,
19
(
2
), pp.
264
273
.
18.
Gupta
,
R.
,
Reddy
,
R.
, and
Mukherjee
,
M. K.
,
2012
, “
Key-Hole Plasma Arc Welding of 8mm Thick Maraging Steel—A Comparison With Multi-Pass GTAW
,”
Weld. World
,
56
(
9–10
), pp.
69
75
.
19.
Gupta
,
R. N.
,
Raja
,
V. S.
,
Mukherjee
,
M. K.
, and
Narayana Murty
,
S. V. S.
,
2017
, “
On Improving the Quality of Gas Tungsten Arc Welded 18Ni 250 Maraging Steel Rocket Motor Casings
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
48
(
10
), pp.
4655
4666
.
20.
Sinha
,
P. P.
,
1999
,
Maraging Steel
,
ISRO
,
Bengaluru
.
21.
ASTM E8-04
,
2010
,
Standard Test Methods for Tension Testing of Metallic Materials
, Vol.
03.01
,
ASTM
.
22.
Jose
,
B.
,
Manoharan
,
M.
, and
Natarajan
,
A.
,
2021
, “
Technology Development for In-Situ Measurement of Residual Stress in Arc Welded Joints of MDN 250 by Portable Cosα X-ray Diffraction Method
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
23.
Rohit
,
B.
, and
Muktinutalapati
,
N. R.
,
2018
, “
Austenite Reversion in 18% Ni Maraging Steel and Its Weldments
,”
Mater. Sci. Technol.
,
34
(
3
), pp.
253
260
.
24.
Li
,
K.
,
Shan
,
J.
,
Wang
,
C.
, and
Tian
,
Z.
,
2016
, “
Effect of Post-Weld Heat Treatments on Strength and Toughness Behavior of T-250 Maraging Steel Welded by Laser Beam
,”
Mater. Sci. Eng. A
,
663
, pp.
157
165
.
25.
Fanton
,
L.
,
Abdalla
,
A. J.
, and
De Lima
,
M. S. F.
,
2014
, “
Heat Treatment and Yb-Fiber Laser Welding of a Maraging Steel
,”
Weld. J.
,
93
(
9
), pp.
362s
368s
.
26.
Rajkumar
,
V.
,
Immanual
,
R.
,
Sivashanmugam
,
N.
,
Kumaresh Babu
,
S. P.
, and
Arivazhagan
,
N.
,
2018
, “
Role of Process Parameters on Bead Geometry and Metallurgical Characteristics in Autogenous Gas Tungsten Arc Welding of Maraging Steels (250 Grade)
,”
Mater. Today Proc.
,
5
(
2
), pp.
7640
7649
.
27.
Subashini
,
L.
,
Prabhakar
,
K. V. P.
,
Ghosh
,
S.
, and
Padmanabham
,
G.
,
2020
, “
Comparison of Laser-MIG Hybrid and Autogenous Laser Welding of M250 Maraging Steel Thick Sections—Understanding the Role of Filler Wire Addition
,”
Int. J. Adv. Manuf. Technol.
,
107
(
3–4
), pp.
1581
1594
.
28.
Gope
,
D. K.
,
Kumar
,
P.
,
Chattopadhyaya
,
S.
,
Wuriti
,
G.
, and
Thomas
,
T.
,
2021
, “
An Investigation Into Microstructure and Mechanical Properties of Maraging Steel Weldment
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1104
(
1
), p.
012014
.
29.
Nageswara Rao
,
M.
,
2006
, “
Progress in Understanding the Metallurgy of 18% Nickel Maraging Steels
,”
Int. J. Mater. Res.
,
97
(
11
), pp.
1594
1607
.
30.
Shamantha
,
C. R.
,
Narayanan
,
R.
,
Iyer
,
K. J. L.
,
Radhakrishnan
,
V. M.
,
Seshadri
,
S. K.
,
Sundararajan
,
S.
, and
Sundaresan
,
S.
,
2000
, “
Tensile Properties and Fracture Toughness of 18Ni (250 Grade) Maraging Steel Weldments
,”
Sci. Technol. Weld. Join.
,
5
(
5
), pp.
329
337
.
31.
Rohit
,
B.
, and
Muktinutalapati
,
N. R.
,
2021
, “
Fatigue Behavior of 18% Ni Maraging Steels: A Review
,”
J. Mater. Eng. Perform.
,
30
(
4
), pp.
2341
2354
.
You do not currently have access to this content.