Abstract

Compared with dry machining, using traditional cutting fluids has some weaknesses, such as environmental pollution, high machining costs, and harmful effects on human health. Internally cooled cutting tools (ICCTs) have been promising, sustainable, health-friendly, and green technologies for turning applications. However, the effects of different types of internal coolant fluids on insert tip temperature (Ttip) have not been investigated for ICCTs. The machining quality of metallic materials and tool life can improve with effective cooling. This study investigates the internal cooling performance of a self-designed internally cooled smart cutting tool (ICSCT) by comparing different heat transfer fluids. Therefore, a conjugate heat transfer (CHT) model was set for a self-designed ICSCT. The CHT simulation was experimentally confirmed using pure water (…developed by Ozturk, E., Yildizli, K., and Saglam, F., 2021, “Investigation on an Innovative Internally Cooled Smart Cutting Tool With the Built-In Cooling-Control System,” Arab. J. Sci. Eng., 46(3), pp. 2397–2411). After that, the effects of flow velocity (Vf) and the inlet temperature of the coolant fluid (Tinlet) alongside different types of glycol-based heat transfer fluids (including pure water) on Ttip were statistically evaluated by the Taguchi method and analysis of the variance (ANOVA). It was found that the most influential factor was the Tinlet at a contribution ratio level of 88.32%. Additionally, according to statistics, Vf and the type of heat transfer fluid were significant. Hence, since no external coolant is used, the designed smart tool can be considered environmentally friendly and health-friendly. In conclusion, glycol-based fluids can be a better choice for internally cooled tool designs owing to their superior features, e.g., corrosion prevention, nontoxicity, and stable heat transfer capability at lower temperatures compared to pure water, although pure water has better thermal properties than the glycol-based fluids (Dynalene Heat Transfer Fluids Technical Datasheets, Cited March 31, 2020).

References

1.
Isik
,
Y.
,
2016
, “
Using Internally Cooled Cutting Tools in the Machining of Difficult-to-Cut Materials Based on Waspaloy
,”
Adv. Mech. Eng.
,
8
(
5
), p.
168781401664788
.
2.
Minton
,
T.
,
Ghani
,
S.
,
Sammler
,
F.
,
Bateman
,
R.
,
Fürstmann
,
P.
, and
Roeder
,
M.
,
2013
, “
Temperature of Internally-Cooled Diamond-Coated Tools for Dry-Cutting Titanium
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
27
35
.
3.
Dinesh
,
S.
,
Senthilkumar
,
V.
,
Asokan
,
P.
, and
Arulkirubakaran
,
D.
,
2015
, “
Effect of Cryogenic Cooling on Machinability and Surface Quality of Bio-Degradable ZK60 Mg Alloy
,”
Mater. Des.
,
87
, pp.
1030
1036
.
4.
Putz
,
M.
,
Dix
,
M.
,
Neubert
,
M.
,
Schmidt
,
G.
, and
Wertheim
,
R.
,
2016
, “
Investigation of Turning Elastomers Assisted With Cryogenic Cooling
,”
13th Global Conference on Sustainable Manufacturing—Decoupling Growth From Resource Use
,
Vietnam
,
Sept. 16–18
, Vol. 40, pp.
631
636
.
5.
Maruda
,
R. W.
,
2016
, “
Impact of Compressed Air Pressure on Geometric Structure of Aisi 1045 Steel Surface After Turning With the Use of Mqcl Method
,”
Adv. Sci. Technol. Res. J.
,
10
(
30
), pp.
159
163
.
6.
Banerjee
,
N.
, and
Sharma
,
A.
,
2016
, “
Development of a Friction Model and Its Application in Finite Element Analysis of Minimum Quantity Lubrication Machining of Ti-6Al-4V
,”
J. Mater. Process. Technol.
,
238
, pp.
181
194
.
7.
Çolak
,
O.
,
2014
, “
Optimization of Machining Performance in High-Pressure Assisted Turning of Ti6Al4V Alloy
,”
Stroj. Vestn./J. Mech. Eng.
,
60
(
10
), pp.
675
681
.
8.
Makhesana
,
M. A.
, and
Patel
,
K. M.
,
2016
, “
Investigation to Study the Applicability of Solid Lubricants in Machining for Clean and Green Manufacturing
,”
Ind. Lubr. Tribol.
,
68
(
5
), pp.
591
596
.
9.
Srikiran
,
S.
,
Ramji
,
K.
,
Satyanarayana
,
B.
, and
Ramana
,
S. V.
,
2014
, “
Investigation on Turning of AISI 1040 Steel With the Application of Nano-Crystalline Graphite Powder as Lubricant
,”
Proc. Inst. Mech. Eng. C
,
228
(
9
), pp.
1570
1580
.
10.
Yüksel
,
S.
, and
Onat
,
A.
,
2015
, “
Investigation of CNC Turning Parameters by Using a Vortex Tube Cooling System
,”
Acta Phys. Pol. A
,
127
(
4
), pp.
881
885
.
11.
Kannappan
,
V.
, and
Thiyagarajan
,
S.
,
2014
, “
The Influence of Process Variables on Machinability of Hardened Tool Steel During the Hard Turning Under Eco-Friendly Cooling Environment
,”
Dyn. Mach. Mech. Ind. Res.
,
592–594
, pp.
781
785
.
12.
Kazeem
,
R. A.
,
Fadare
,
D. A.
,
Abutu
,
J.
,
Lawal
,
S. A.
, and
Adesina
,
O. S.
,
2020
, “
Performance Evaluation of Jatropha Oil-Based Cutting Fluid in Turning AISI 1525 Steel Alloy
,”
CIRP J. Manuf. Sci. Technol.
,
31
, pp.
418
430
.
13.
Debnath
,
S.
,
Anwar
,
M.
,
Basak
,
A. K.
, and
Pramanik
,
A.
,
2020
, “
Use of Palm Olein as Cutting Fluid During Turning of Mild Steel
,”
Aust. J. Mech. Eng.
, pp.
1
11
.
14.
Peng
,
R.
,
Jiang
,
H.
,
Tang
,
X.
,
Huang
,
X.
,
Xu
,
Y.
, and
Hu
,
Y.
,
2019
, “
Design and Performance of an Internal-Cooling Turning Tool With Micro-Channel Structures
,”
J. Manuf. Process.
,
45
, pp.
690
701
.
15.
Ravi
,
A. M.
, and
Murigendrappa
,
S. M.
,
2018
, “
Experimental Study on Internal Cooling System in Hard Turning of HCWCI Using CBN Tools
,”
Adv. Mech. Des. Mater. Manuf.
,
1943
(
020053
), pp.
1
7
.
16.
Jen
,
T. C.
,
Gutierrez
,
G.
,
Eapen
,
S.
,
Barber
,
G.
,
Zhao
,
H.
, and
Szuba
,
P. S.
,
2002
, “
Investigation of Heat Pipe Cooling in Drilling Applications. Part 1: Preliminary Numerical Analysis and Verification
,”
Int. J. Mach. Tools Manuf.
,
42
(
5
), pp.
643
652
.
17.
Ali
,
M. A. M.
,
Azmi
,
A. Z. M.
,
Zain
,
M. Z. M.
,
Khalil
,
A. N. M.
,
Mansor
,
A. F.
, and
Salleh
,
H. M.
,
2018
, “
The Effect of Concentration of Coco Amido Propyl Betaine (CAPB) as Green Additive in Bio-Based Coconut Oil Lubricant on the Machining Performance of Inconel 718
,”
AIP Conf. Proc.
,
2030
(
020041
), pp.
1
5
.
18.
ManojKumar
,
K.
, and
Ghosh
,
A.
,
2016
, “
Assessment of Cooling-Lubrication and Wettability Characteristics of Nano-Engineered Sunflower Oil as Cutting Fluid and Its Impact on SQCL Grinding Performance
,”
J. Mater. Process. Technol.
,
237
, pp.
55
64
.
19.
Radhika
,
A.
,
Rao
,
S.
, and
Yogesh
,
K. B.
,
2019
, “
Evaluating Machining Performance of AlSI 1014 Steel Using Gingelly Oil as Cutting Fluid
,”
Aust. J. Mech. Eng.
,
19
(
4
), pp.
445
456
.
20.
Rahim
,
E.
, and
Sasahara
,
H.
,
2017
, “
Performance of Palm Oil as a Biobased Machining Lubricant When Drilling Inconel 718
,”
Sriwijaya International Conference on Engineering, Science and Technology (SICEST 2016)
,
MATEC Web Conf.
,
Mar. 9
, Vol. 101, p.
03015
.
21.
Jeevan
,
T. P.
,
2018
, “
Performance Evaluation of Jatropha and Pongamia Oil Based Environmentally Friendly Cutting Fluids for Turning AA 6061
,”
Adv. Tribol.
,
2018
, pp.
1
9
.
22.
Zhang
,
J.
,
Posinasetti
,
N.
, and
Eckman
,
M.
,
2012
, “
Experimental Evaluation of a Bio-Based Cutting Fluid Using Multiple Machining Characteristics
,”
Int. J. Mod. Eng.
,
12
(
2
), pp.
35
44
.
23.
Li
,
G.
,
Yi
,
S.
,
Li
,
N.
,
Pan
,
W.
,
Wen
,
C.
, and
Ding
,
S.
,
2019
, “
Quantitative Analysis of Cooling and Lubricating Effects of Graphene Oxide Nanofluids in Machining Titanium Alloy Ti6Al4V
,”
J. Mater. Process. Technol.
,
271
, pp.
584
598
.
24.
Sharma
,
A. K.
,
Tiwari
,
A. K.
, and
Dixit
,
A. R.
,
2018
, “
Prediction of Temperature Distribution Over Cutting Tool With Alumina-MWCNT Hybrid Nanofluid Using Computational Fluid Dynamics (CFD) Analysis
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
427
439
.
25.
Sharma
,
A. K.
,
Tiwari
,
A. K.
, and
Dixit
,
A. R.
,
2016
, “
Effects of Minimum Quantity Lubrication (MQL) in Machining Processes Using Conventional and Nanofluid Based Cutting Fluids: A Comprehensive Review
,”
J. Cleaner Prod.
,
127
, pp.
1
18
.
26.
Ferri
,
C.
,
Minton
,
T.
,
Ghani
,
S. B.
, and
Cheng
,
K.
,
2014
, “
Internally Cooled Tools and Cutting Temperature in Contamination-Free Machining
,”
Proc. Inst. Mech. Eng. C
,
228
(
1
), pp.
135
145
.
27.
Li
,
T. J.
,
Wu
,
T.
,
Ding
,
X. H.
,
Chen
,
H.
, and
Wang
,
L.
,
2017
, “
Design of an Internally Cooled Turning Tool Based on Topology Optimization and CFD Simulation
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
1327
1337
.
28.
Li
,
T. J.
,
Wu
,
T.
,
Ding
,
X. H.
,
Chen
,
H.
, and
Wang
,
L.
,
2018
, “
Experimental Study on the Performance of an Internal Cooled Turning Tool With Topological Channel
,”
Int. J. Adv. Manuf. Technol.
,
98
(
1–4
), pp.
479
485
.
29.
Zakaria
,
M. S.
,
Nordin
,
F.
,
Jamalludin
,
M. R.
,
Rosli
,
M. U.
,
Abd Rahim
,
W. M. F. W.
, and
Ishak
,
M. I.
,
2017
, “
Finite Element Study on the Integrity of Tool Holder With Integrated Internal Cooling Channel
,”
3rd Electronic and Green Materials International Conference 2017 (EGM 2017)
,
Thailand
,
Apr. 29–30
, p.
1885
.
30.
Isik
,
Y.
,
Kus
,
A.
,
Coskun
,
S.
,
Ozdemir
,
K.
, and
Cakir
,
M. C.
,
2017
, “
A Novel Approach to Use Internally Cooled Cutting Tools in Dry Metal Cutting
,”
Indian J. Eng. Mater. Sci.
,
24
(
3
), pp.
239
246
.
31.
Rahim
,
W. M. F. W. A.
,
Shahrizad
,
A. F. M.
,
Khor
,
C. Y.
,
Rosli
,
M. U.
,
Jahidi
,
H.
, and
Ishak
,
M. I.
,
2018
, “
Turbulent Coolant Inside Cutting Tool to Control Heat Transfer During Cutting Process
,”
Green Des. Manuf.: Adv. Emerg. Appl.
,
2030
, pp.
1
5
.
32.
Shu
,
S. R.
,
Ding
,
H.
,
Chen
,
S. J.
, and
Cheng
,
K.
,
2012
, “
FEM-Based Design and Analysis of a Smart Cutting Tool With Internal Cooling for Cutting Temperature Measurement and Control
,”
Adv. Mater. Technol.
,
217–219
(
Pts 1–3
), pp.
1874
1879
.
33.
Shu
,
S. R.
,
Cheng
,
K.
,
Ding
,
H.
, and
Chen
,
S. J.
,
2013
, “
An Innovative Method to Measure the Cutting Temperature in Process by Using an Internally Cooled Smart Cutting Tool
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061018
.
34.
Shu
,
S. R.
,
Ding
,
H.
,
Chen
,
S. J.
, and
Cheng
,
K.
,
2014
, “
Thermal Design and Analysis of an Internally Cooled Smart Cutting Tool and Its Implementation Perspectives
,”
Adv. Mater. Manuf. Sci. Technol.
,
770
, pp.
120
125
.
35.
Sun
,
X.
,
Bateman
,
R.
,
Cheng
,
K.
, and
Ghani
,
S. C.
,
2012
, “
Design and Analysis of an Internally Cooled Smart Cutting Tool for Dry Cutting
,”
Proc. Inst. Mech. Eng. B
,
226
(
B4
), pp.
585
591
.
36.
Yao
,
B.
,
Sun
,
W. F.
,
Chen
,
B. Q.
,
Yu
,
X. J.
,
He
,
Y. C.
, and
Feng
,
W.
,
2017
, “
An Independent Internal Cooling System for Promoting Heat Dissipation During Dry Cutting With Numerical and Experimental Verification
,”
Appl. Sci.
,
7
(
332
), pp.
1
17
.
37.
Wu
,
T.
,
Li
,
T. J.
,
Ding
,
X. H.
,
Chen
,
H.
, and
Wang
,
L.
,
2018
, “
Design of a Modular Green Closed Internal Cooling Turning Tool for Applications
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
5
(
2
), pp.
211
217
.
38.
Vicentin
,
G. C.
,
Sanchez
,
L. E. A.
,
Scalon
,
V. L.
, and
Abreu
,
G. G. C.
,
2011
, “
A Sustainable Alternative for Cooling the Machining Processes Using a Refrigerant Fluid in Recirculation Inside the Toolholder
,”
Clean Technol. Environ. Policy
,
13
(
6
), pp.
831
840
.
39.
Sanchez
,
L. E. D. A.
,
Neto
,
R. R. I.
,
Fragelli
,
R. L.
,
da Silva
,
C. E.
, and
Scalon
,
V. L.
,
2016
, “
Machining With Internally Cooled Toolholder Using a Phase Change Fluid
,”
Research and Innovation in Manufacturing: Key Enabling Technologies for the Factories of the Future—Proceedings of the 48th CIRP Conference on Manufacturing Systems
,
Italy
,
June 24–26
, Vol. 41, pp.
847
851
.
40.
ANSYS CFX-Solver Modeling Guide
,
2011
,
ANSYS, Inc
.,
594
.
41.
Ozturk
,
E.
,
Yildizli
,
K.
, and
Saglam
,
F.
,
2021
, “
Investigation on an Innovative Internally Cooled Smart Cutting Tool With the Built-In Cooling-Control System
,”
Arab. J. Sci. Eng.
,
46
(
3
), pp.
2397
2411
.
42.
Dynalene Heat Transfer Fluids Technical Datasheets
, https://www.dynalene.com/heat-transfer-fluids/, Accessed March 31, 2020.
43.
Chen
,
D. C.
,
You
,
C. S.
,
Nian
,
F. L.
, and
Guo
,
M. W.
,
2011
, “
Using the Taguchi Method and Finite Element Method to Analyze a Robust New Design for Titanium Alloy Prick Hole Extrusion
,”
11th International Conference on the Mechanical Behavior of Materials (Icm11)
, p.
10
.
44.
Cappetti
,
N.
,
Naddeo
,
A.
,
Naddeo
,
F.
, and
Solitro
,
G. F.
,
2016
, “
Finite Elements/Taguchi Method Based Procedure for the Identification of the Geometrical Parameters Significantly Affecting the Biomechanical Behavior of a Lumbar Disc
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
12
), pp.
1278
1285
.
45.
Gunay
,
M.
, and
Yucel
,
E.
,
2013
, “
Application of Taguchi Method for Determining Optimum Surface Roughness in Turning of High-Alloy White Cast Iron
,”
Measurement
,
46
(
2
), pp.
913
919
.
46.
Ic
,
Y. T.
,
Duran
,
H.
,
Kececi
,
B.
,
Ilik
,
E.
, and
Bilgic
,
B.
,
2016
, “
Development of a Computer Application for Multi-Response Taguchi Optimization
,”
J. Polytech.
,
19
(
3
), pp.
311
323
.
47.
Antony
,
J.
,
2014
, “Chapter: 9—Case Studies,”
Design of Experiments for Engineers and Scientists
, 2nd ed.,
J.
Antony
, ed.,
Elsevier
,
Oxford
, pp.
125
188
.
48.
Gologlu
,
C.
, and
Sakarya
,
N.
,
2008
, “
The Effects of Cutter Path Strategies on Surface Roughness of Pocket Milling of 1.2738 Steel Based on Taguchi Method
,”
J. Mater. Process. Technol.
,
206
(
1–3
), pp.
7
15
.
You do not currently have access to this content.