Abstract

Currently, it still lacks the controlled studies which compare differences in the machinability between the TA15 alloy and network-structured TiBw/TA15 composites, which is not conducive to promoting the design and practical application of the TiBw/TA15 composites. Therefore, in this paper, the impact of material properties on the micro-scale cutting performances of the two materials is explored through the in-situ high-speed imaging and digital image correlation (DIC) technique. During the investigation, the chip formation process is recorded under diverse cutting load conditions, and the thermoplastic deformation in the shear plane is quantified using successive images and analyzed based on the microstructural and mechanical properties. Furthermore, the microstructural deformations in the machined subsurface are observed and evaluated for the two materials. The results indicate that the inhomogeneous deformation in micro-scale cutting that inevitably occurs in the TA15 alloy is improved in the TiBw/TA15 composites. And in comparison to the TA15 alloy, the TiBw/TA15 composites have greater temperatures and smaller accumulative plastic strain at failure in the shear plane due to the influences of macro- and micromechanical properties, while the comparison of equivalent strain rates between the two materials depends on the chip type of TA15 alloy. Accordingly, the subsurface deformation of the TA15 ally is notably anisotropic, while the microcracks and voids induced by TiBw reinforcement damage are evident in TiBw/TA15 composites. These findings can provide new insights into the future simulation and prediction of micro-cutting multiphase materials.

References

1.
Sun
,
Z.
,
Wang
,
X.
,
Zhang
,
J.
, and
Yang
,
H.
,
2014
, “
Prediction and Control of Equiaxed α in Near-β Forging of TA15 Ti-Alloy Based on BP Neural Network: For Purpose of Tri-Modal Microstructure
,”
Mater. Sci. Eng. A.
,
591
(
3
), pp.
18
25
.
2.
Peters
,
M.
,
Hemptenmacher
,
J.
,
Kumpfert
,
J.
, and
Leyens
,
C.
,
2003
,
Titanium and Titanium Alloys: Fundamentals and Applications
,
L.
Christoph
and
P.
Manfred
, eds.,
Wiley-VCH
,
Germany
.
3.
Feng
,
Y.
,
Hou
,
J.
,
Gao
,
L.
,
Cui
,
G.
, and
Zhang
,
W.
,
2020
, “
Research on the Inhomogeneity and Joint Interface of in Situ Oriented TiBw/TA15 Composites Fabricated by Vacuum Hot-Pressing Sintering and Canned Extrusion
,”
J. Mater. Process. Technol.
,
59
, pp.
791
800
.
4.
Samuel
,
J.
,
Jun
,
M. B. G.
,
Ozdoganlar
,
O. B.
,
Honegger
,
A.
,
Vogler
,
M.
, and
Kapoor
,
S. G.
,
2020
, “
Micro/Meso-Scale Mechanical Machining 2020: A Two-Decade State-of-the-Field Review
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
11
), p.
110809
.
5.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2006
, “
Chip Formation During Microscale Cutting of a Medium Carbon Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
467
481
.
6.
He
,
Y.
,
Zhang
,
J.
,
Qi
,
Y.
,
Liu
,
H.
,
Memon
,
A. R.
, and
Zhao
,
W.
,
2017
, “
Numerical Study of Microstructural Effects on Chip Formation in High Speed Cutting of Ductile Iron With Discrete Element Method
,”
J. Mater. Process. Technol.
,
249
, pp.
291
301
.
7.
Cedergren
,
S.
,
Petti
,
G.
, and
SjöBerg
,
G.
,
2013
, “
On the Influence of Work Material Microstructure on Chip Formation, Cutting Forces and Acoustic Emission When Machining Ti-6Al-4V
,”
Procedia CIRP.
,
12
, pp.
55
60
.
8.
Sharma
,
S.
, and
Meena
,
A. J. J. o. M. S.
,
2020
, “
Microstructure Induced Shear Instability Criterion During High Speed Machining of Ti6Al4V
,”
Int. J. Mech. Sci.
,
143
, pp.
1
25
.
9.
Ahmadi
,
M.
,
Karpat
,
Y.
,
Acar
,
O.
, and
Kalay
,
Y. E.
,
2017
, “
Microstructure Effects on Process Outputs in Micro Scale Milling of Heat Treated Ti6Al4V Titanium Alloys
,”
J. Mater. Process. Technol.
,
252
, pp.
333
347
.
10.
Ran
,
J.
,
Zhang
,
G.
,
Chen
,
G.
,
Wang
,
J.
,
Deng
,
B.
,
Kuz’min
,
M.
,
Xu
,
T.
, and
Gong
,
F.
,
2020
, “
A Multi-Strain-Rate Damage Model on Fracture Prediction in Single-Point Diamond Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
110
(
9
), pp.
2753
2765
.
11.
Jie
,
C.
,
Weiwei
,
Y.
,
Zhenyu
,
Z.
,
Yugang
,
L.
,
Dong
,
C.
,
Qinglong
,
A.
,
Jiwei
,
G.
,
Ming
,
C.
, and
Haowei
,
W.
,
2021
, “
Effects of In-Situ TiB2 Particles on Machinability and Surface Integrity in Milling of TiB2/2024 and TiB2/7075 Al Composites
,”
Chin. J. Aeronaut.
,
34
(
6
), pp.
110
124
.
12.
Kumar
,
A.
,
Mahapatra
,
M.
, and
Jha
,
P. J. M.
,
2014
, “
Effect of Machining Parameters on Cutting Force and Surface Roughness of In Situ Al–4.5% Cu/TiC Metal Matrix Composites
,”
Measurement
,
48
(
1
), pp.
325
332
.
13.
Davis
,
B.
,
Dabrow
,
D.
,
Ju
,
L.
,
Li
,
A.
,
Xu
,
C.
, and
Huang
,
Y.
,
2017
, “
Study of Chip Morphology and Chip Formation Mechanism During Machining of Magnesium-Based Metal Matrix Composites
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
9
), p.
091008
.
14.
Pramanik
,
A.
,
Zhang
,
L.
, and
Arsecularatne
,
J.
,
2008
, “
Machining of Metal Matrix Composites: Effect of Ceramic Particles on Residual Stress, Surface Roughness and Chip Formation
,”
Int. J. Mach. Tools Manuf.
,
48
(
15
), pp.
1613
1625
.
15.
Fang
,
Y.
,
Wang
,
Y.
,
Zhang
,
P.
, and
Luo
,
H.
,
2021
, “
Research on Chip Formation Mechanism and Surface Morphology of Particle-Reinforced Metal Matrix Composites
,”
Int. J. Adv. Manuf. Technol.
,
117
(
11
), pp.
3793
3804
.
16.
Liao
,
Z.
,
Abdelhafeez
,
A.
,
Li
,
H.
,
Yang
,
Y.
,
Diaz
,
O. G.
, and
Axinte
,
D.
,
2019
, “
State-of-the-art of Surface Integrity in Machining of Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
143
, pp.
63
91
.
17.
Le
,
B.
,
Khaliq
,
J.
,
Huo
,
D.
,
Teng
,
X.
, and
Shyha
,
I.
,
2020
, “
A Review on Nanocomposites. Part 2: Micromachining
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
10
), p.
100802
.
18.
Sun
,
W.
,
Duan
,
C.
, and
Yin
,
W.
,
2021
, “
Modeling of Force and Temperature in Cutting of Particle Reinforced Metal Matrix Composites Considering Particle Effects
,”
J. Mater. Process. Technol.
,
290
, p.
116991
.
19.
Pan
,
Z.
,
Shih
,
D. S.
,
Tabei
,
A.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2017
, “
Modeling of Ti-6Al-4V Machining Force Considering Material Microstructure Evolution
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5
), pp.
2673
2680
.
20.
Venkatachalam
,
S.
,
Fergani
,
O.
,
Li
,
X.
,
Guo Yang
,
J.
,
Chiang
,
K.
, and
Liang
,
S. Y.
,
2015
, “
Microstructure Effects on Cutting Forces and Flow Stress in Ultra-precision Machining of Polycrystalline Brittle Materials
.”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021020
.
21.
Lasri
,
L.
,
Nouari
,
M.
, and
El Mansori
,
M.
,
2009
, “
Modelling of Chip Separation in Machining Unidirectional FRP Composites by Stiffness Degradation Concept
,”
Compos. Sci. Technol.
,
69
(
5
), pp.
684
692
.
22.
Zhang
,
Y.
,
Mabrouki
,
T.
,
Nelias
,
D.
,
Courbon
,
C.
,
Rech
,
J.
, and
Gong
,
Y.
,
2012
, “
Cutting Simulation Capabilities Based on Crystal Plasticity Theory and Discrete Cohesive Elements
,”
J. Mater. Process. Technol.
,
212
(
4
), pp.
936
953
.
23.
Elkhateeb
,
M. G.
, and
Shin
,
Y. C.
,
2019
, “
Investigation of the Machining Behavior of Ti6Al4V/TiC Composites During Conventional and Laser-Assisted Machining
,”
ASME. J. Manuf. Sci. Eng.
,
141
(
5
), p.
051001
.
24.
Udupa
,
A.
,
Viswanathan
,
K.
,
Davis
,
J. M.
,
Saei
,
M.
,
Mann
,
J. B.
, and
Chandrasekar
,
S.
,
2019
, “
A Mechanochemical Route to Cutting Highly Strain-Hardening Metals
,”
Tribol. Lett.
,
67
(
1
), pp.
1
12
.
25.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
,
Mousseigne
,
M.
, and
Senatore
,
J.
,
2020
, “
Thermomechanical Coupling Investigation in Ti-6Al-4V Orthogonal Cutting: Experimental and Numerical Confrontation
,”
Int. J. Mech. Sci.
,
169
, p.
105322
.
26.
Yang
,
Z.
,
Zhang
,
X.
,
Nie
,
G.
,
Zhang
,
D.
, and
Ding
,
H.
,
2021
, “
A Comprehensive Experiment-Based Approach to Generate Stress Field and Slip Lines in Cutting Process
,”
ASME. J. Manuf. Sci. Eng.
,
143
(
7
), p.
071014
.
27.
Lütjering
,
G.
, and
Williams
,
J. C.
,
2007
,
Titanium
,
Springer Science & Business Media
,
Berlin
.
28.
Wang
,
D.
,
Li
,
H.
,
Wang
,
X.
,
Zheng
,
W.
,
Lin
,
Z.
, and
Liu
,
G.
,
2019
, “
The Microstructure Evolution and Mechanical Properties of TiBw/TA15 Composite With Network Structure Prepared by Rapid Current Assisted Sintering
,”
Metals
,
9
(
5
), p.
540
.
29.
Zhang
,
R.
,
Huang
,
L.
,
An
,
Q.
,
Geng
,
L.
,
Wang
,
B.
, and
Jiao
,
Y.
,
2019
, “
The Hyperbolic Constitutive Equations and Modified Dynamic Material Model of TiBw/Ti-6.5 Al-2.5 Zr-1Mo-1V-0.5 Si Composites
,”
Mater. Sci. Eng. A.
,
766
, p.
138329
.
30.
Huang
,
L.
, and
Geng
,
L.
,
2017
, “Design and Fabrication of Network-Structured Pure Ti Matrix Composites,”
Discontinuously Reinforced Titanium Matrix Composites
,
Springer
,
New York
, pp.
17
38
.
31.
Zhang
,
R.
,
Wang
,
D.
,
Huang
,
L.
, and
Yuan
,
S. J.
,
2017
, “
Effects of Heat Treatment on Microstructure and High Temperature Tensile Properties of TiBw/TA15 Composite Billet With Network Architecture
,”
Mater. Sci. Eng. A.
,
679
, pp.
314
322
.
32.
Huo
,
D.
,
2013
,
Micro-Scale Cutting: Fundamentals and Applications
,
John Wiley & Sons
,
University of Bath
.
33.
Wang
,
P.
,
Nian
,
G.
,
Qu
,
S.
,
Shan
,
Y.
,
Huang
,
L.
, and
Peng
,
H.-X.
,
2017
, “
Numerical Study on Mechanical Properties of Discontinuously Reinforced Titanium Matrix Composite With Network Reinforcement Architecture
,”
Int J Appl Mech
,
9
(
5
), pp.
1750073
.
34.
Niu
,
Z.
,
Jiao
,
F.
, and
Cheng
,
K.
,
2018
, “
An Innovative Investigation on Chip Formation Mechanisms in Micro-Milling Using Natural Diamond and Tungsten Carbide Tools
,”
J. Manuf. Process.
,
31
, pp.
382
394
.
35.
Hu
,
C.
,
Zhang
,
W.
,
Zhuang
,
K.
,
Zhou
,
J.
, and
Ding
,
H.
,
2020
, “
On the Steady-State Workpiece Flow Mechanism and Force Prediction Considering Piled-Up Effect and Dead Metal Zone Formation
,”
ASME. J. Manuf. Sci. Eng
,
143
(
4
), p.
041009
.
36.
Lagarde
,
Q.
,
Wagner
,
V.
,
Dessein
,
G.
, and
Harzallah
,
M.
,
2021
, “
Effect of Temperature on Tool Wear During Milling of Ti64
,”
ASME. J. Manuf. Sci. Eng
,
143
(
7
), p.
071007
.
37.
Wagner
,
V.
,
Barelli
,
F.
,
Dessein
,
G.
,
Laheurte
,
R.
,
Darnis
,
P.
,
Cahuc
,
O.
, and
Mousseigne
,
M.
,
2018
, “
Thermal and Microstructure Study of the Chip Formation During Turning of Ti64 β Lamellar Titanium Structure
,”
ASME. J. Manuf. Sci. Eng.
,
140
(
3
), p.
031010
.
38.
Sagapuram
,
D.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Mann
,
J. B.
,
M’Saoubi
,
R.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
On the Cutting of Metals: A Mechanics Viewpoint
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
11
), p.
110808
.
39.
Huang
,
L.
,
Bao
,
Y.
,
Zhang
,
R.
,
Jiang
,
S.
,
Geng
,
L.
, and
Xiao
,
M.
,
2018
, “
Dry Sliding Wear Characteristics of In-Situ TiBw/Ti6Al4 V Composites With Different Network Parameters
,”
Tribol. Int.
,
121
, pp.
252
259
.
40.
Yang
,
M.
,
Zhou
,
L.
,
Peng
,
F.
,
Deng
,
B.
,
Huang
,
Y.
, and
Rong
,
Y.
,
2021
, “
On Understanding the Chip Formation Mechanism of TiBw/TA15 Composites With Network Architecture in Micro Cutting
,”
Compos. Struct.
,
278
, p.
114721
.
41.
Sela
,
A.
,
Ortiz-De-Zarate
,
G.
,
Soler
,
D.
,
Germain
,
G.
,
Aristimuño
,
P.
, and
Arrazola
,
P. J.
,
2021
, “
Measurement of Plastic Strain and Plastic Strain Rate During Orthogonal Cutting for Ti-6Al-4V
,”
Int. J. Mech. Sci.
,
198
, p.
106397
.
42.
Bai
,
W.
,
Sun
,
R.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2017
, “
Improved Analytical Prediction of Chip Formation in Orthogonal Cutting of Titanium Alloy Ti6Al4 V
,”
Int. J. Mech. Sci.
,
133
, pp.
357
367
.
43.
Chen
,
X.
,
Tang
,
J.
,
Ding
,
H.
, and
Liu
,
A.
,
2021
, “
A new Geometric Model of Serrated Chip Formation in High-Speed Machining
,”
J. Manuf. Process.
,
62
, pp.
632
645
.
44.
Hao
,
Z.
,
Li
,
J.
, and
Fan
,
Y.
,
2021
, “
Research on Deformation Mechanism of Cutting Nickel-Based Superalloy Inconel718 Based on Strain Gradient Theory
,”
ASME. J. Manuf. Sci. Eng.
,
143
(
10
), p.
101007
.
45.
Niu
,
Z.
, and
Cheng
,
K.
,
2020
, “
Improved Dynamic Cutting Force Modelling in Micro Milling of Metal Matrix Composites Part I: Theoretical Model and Simulations
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
9
), pp.
1733
1745
.
46.
Miguélez
,
M.
,
Soldani
,
X.
, and
Molinari
,
A.
,
2013
, “
Analysis of Adiabatic Shear Banding in Orthogonal Cutting of Ti Alloy
,”
Int. J. Mech. Sci.
,
75
(
1
), pp.
212
222
.
47.
Gao
,
P.
,
Zhan
,
M.
,
Fan
,
X.
,
Lei
,
Z.
, and
Cai
,
Y.
,
2017
, “
Hot Deformation Behavior and Microstructure Evolution of TA15 Titanium Alloy With Nonuniform Microstructure
,”
Mater. Sci. Eng. A.
,
689
, pp.
243
251
.
48.
Park
,
C. H.
,
Kim
,
J. H.
,
Hyun
,
Y.-T.
,
Yeom
,
J.-T.
, and
Reddy
,
N.
,
2014
, “
The Origins of Flow Softening During High-Temperature Deformation of a Ti–6Al–4 V Alloy With a Lamellar Microstructure
,”
J. Alloys. Compound.
,
582
, pp.
126
129
.
49.
Guo
,
Y.
,
Chen
,
J.
, and
Saleh
,
A.
,
2019
, “
In Situ Analysis of Deformation Mechanics of Constrained Cutting Toward Enhanced Material Removal
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
2
), p.
021002
.
You do not currently have access to this content.