Abstract

In Part II of these two-part papers, the effects of four finite element method (FEM) representations of the milling process on the prediction of chip morphology and residual stresses (RS) are investigated. Part II focuses on the milling of conventional uncut chip thickness h with finite cutting edge radius and flank wear, while Part I of these two-part papers has reported on the results in the case of milling small uncut chip thickness in the micrometer range with finite cutting edge radius. Two geometric models of the flank wear land composed of flat and curved wear land are proposed and assessed. The four process representations are (i) orthogonal cutting with flat wear land and with the mean uncut chip thickness h¯; (ii) orthogonal cutting with flat wear land and with variable h, which characterizes the down-milling process and which is imposed on a flat surface of the final workpiece; (iii) modeling the true kinematics of the down-milling process with flat wear land, and (iv) modeling the true kinematics of the down-milling process with curved wear land. They are designated as Cte-h, Var-h, True-h, and True-h*. The effectiveness of these representations is assessed when milling Ti6Al4V with a flank wear land of VB = 200 μm.

References

1.
Tounsi
,
N.
, and
El-Wardany
,
T.
,
2020
, “
FE Analysis of the Effects of Process Representations on the Prediction of Residual Stresses and Chip Morphology in the Down-Milling of Ti6Al4V: Part I: Effect of Small Uncut Chip Thicknesses in the Micrometer Range in Milling With Finite Cutting Edge Radius
,”
ASME J. Manuf. Sci. Eng.
10.1115/1.4051287
2.
Dimla
,
D. E.
,
2000
, “
Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations—A Review of Methods
,”
Int. J. Mach. Tools Manuf.
,
40
(
8
), pp.
1073
1098
.
3.
Matsumoto
,
Y.
,
Hashimoto
,
F.
, and
Lahoti
,
G.
,
1999
, “
Surface Integrity Generated by Precision Hard Cutting
,”
CIRP Ann. Manuf. Technol.
,
48
(
1
), pp.
59
62
.
4.
Remadna
,
M.
, and
Rigal
,
J. F.
,
1999
, “
Experimental Study of the Wear of Cubic Boron Nitride (CBN) Cutting Tools
,”
Optimum Technologic Systems and Materials in the Machines Building Field-TSTM 5
,
5
(
1
), Romanian Academy, Romania, pp.
154
161
.
5.
Grzesik
,
W.
, and
Wanat
,
T.
,
2005
, “
Comparative Assessment of Surface Roughness Produced by Hard Machining With Mixed Ceramic Tools Including 2D and 3D Analysis
,”
J. Mater. Process. Technol.
,
169
(
3
), pp.
364
371
.
6.
Chen
,
X. Q.
, and
Li
,
H. Z.
,
2009
, “
Development of a Tool Wear Observer Model for Online Tool Condition Monitoring and Control in Machining Nickel-Based Alloys
,”
Int. J. Adv. Manuf. Technol.
,
45
(
7–8
), pp.
786
800
.
7.
Kuljanic
,
E.
, and
Sortino
,
M.
,
2005
, “
TWEM—A Method Based on Cutting Forces—Monitoring Tool Wear in Face Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
29
34
.
8.
Ghosh
,
N.
,
Ravi
,
Y. B.
,
Patra
,
A.
,
Mukhopadhyay
,
S.
,
Paul
,
S.
,
Mohanty
,
A. R.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Estimation of Tool Wear During CNC Milling Using Neural Network-Based Sensor Fusion
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
466
479
.
9.
Malakizadi
,
A.
,
Ghasemi
,
R.
,
Behring
,
C.
,
Olofsson
,
J.
,
Jarfors
,
A. E. W.
,
Nyborg
,
L.
, and
Krajnik
,
P.
,
2018
, “
Effects of Workpiece Microstructure, Mechanical Properties and Machining Conditions on Tool Wear When Milling Compacted Graphite Iron
,”
Wear
,
410–411
, pp.
190
201
.
10.
Arrazola
,
P.
,
Garay
,
A.
,
Fernandez
,
E.
, and
Ostolaza
,
K.
,
2014
, “
Correlation Between Tool Flank Wear, Force Signals and Surface Integrity When Turning Bars of Inconel 718 in Finishing Conditions
,”
Int. J. Mach. Machinabil. Mater.
,
15
(
1/2
), pp.
84
100
.
11.
Astakhov
,
V. P.
,
2004
, “
The Assessment of Cutting Tool Wear
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
637
647
.
12.
Shimada
,
S.
,
Tanaka
,
H.
,
Higuchi
,
M.
,
Yamaguchi
,
T.
,
Honda
,
S.
, and
Obata
,
K.
,
2004
, “
Thermo-Chemical Wear Mechanism of Diamond Tool in Machining of Ferrous Metals
,”
Ann. CIRP
,
53
(
1
), pp.
57
60
.
13.
Penalva
,
M. L.
,
Arizmendi
,
M.
,
Dıaz
,
F.
, and
Fernandez
,
J.
,
2002
, “
Effect of Tool Wear on Roughness in Hard Turning
,”
Ann. CIRP
,
51
(
1
), pp.
57
60
.
14.
Abele
,
E.
,
Sahm
,
A.
, and
Schulz
,
H.
,
2002
, “
Wear Mechanism When Machining Compacted Graphite Iron
,”
Ann. CIRP
,
51
(
1
), pp.
53
56
.
15.
Jawahir
,
I. S.
,
Ghosh
,
R.
,
Fang
,
X. D.
, and
Li
,
P. X.
,
1995
, “
An Investigation of the Effects of Chip Flow on Tool-Wear in Machining With Complex Grooved Tools
,”
Wear
,
184
(
2
), pp.
145
154
.
16.
Takeyama
,
H.
, and
Murata
,
T.
,
1963
, “
Basic Investigations on Tool Wear
,”
ASME-J. Eng. Ind.
,
85
(
1
), pp.
33
38
.
17.
Orra
,
K.
, and
Choudhury
,
S. K.
,
2018
, “
Mechanistic Modelling for Predicting Cutting Forces in Machining Considering Effect of Tool Nose Radius on Chip Formation and Tool Wear Land
,”
Int. J. Mech. Sci.
,
142–143
, pp.
255
268
.
18.
Wojciechowski
,
S.
,
Maruda
,
R. W.
,
Nieslony
,
P.
, and
Krolczyk
,
G. M.
,
2016
, “
Investigation on the Edge Forces in Ball End Milling of Inclined Surfaces
,”
Int. J. Mech. Sci.
,
119
, pp.
360
369
.
19.
Chinchanikar
,
S.
, and
Choudhury
,
S. K.
,
2015
, “
Predictive Modelling for Flank Wear Progression of Coated Carbide Tool in Turning Hardened Steel Under Practical Machining Conditions
,”
Int. J. Adv. Manuf. Technol
,
76
(
5–8
), pp.
1185
1201
.
20.
Wang
,
J.
,
Huang
,
C. J.
, and
Song
,
W. G.
,
2003
, “
The Effect of Tool Flank Wear on the Orthogonal Cutting Process and Its Practical Implications
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
338
346
.
21.
Smithy
,
D. W.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2000
, “
A Worn Tool Force Model for Three-Dimensional Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
40
(
13
), pp.
1929
1950
.
22.
Smithy
,
D. W.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2001
, “
A New Mechanistic Model for Predicting Worn Tool Cutting Forces
,”
J. Mach. Sci. Technol.
,
5
(
1
), pp.
23
42
.
23.
Wen
,
H.
,
Zheng
,
L.
,
Li
,
Z. Z.
, and
Hu
,
R. S.
,
2003
, “
An Improved Chip Flow Model Considering Cutting Geometry Variations Based on the Equivalent Cutting Edge Method
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
217
(
12
), pp.
1737
1745
.
24.
Woldorf
,
D. J.
,
1996
, “
Shearing, Ploughing and Wear in Orthogonal Machining
,”
Ph.D. thesis
,
University of Illinois Urbana-Champaign
.
25.
Wang
,
J.
,
2001
, “
Development of a Chip Flow Model for Turning Operations
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1265
1274
.
26.
Arsecularatne
,
J.
,
Mathew
,
P.
, and
Oxley
,
P. L. B.
,
1995
, “
Prediction of Chip Flow Direction and Cutting Forces in Oblique Machining With Nose Radius Tools
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
209
(
4
), pp.
305
315
.
27.
List
,
G.
,
Sutter
,
G.
, and
Bouthiche
,
A.
,
2012
, “
Cutting Temperature Prediction in High Speed Machining by Numerical Modelling of Chip Formation and Its Dependence With Crater Wear
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
1
9
.
28.
Attanasio
,
A.
, and
Umbrello
,
D.
,
2009
, “
Abrasive and Diffusive Tool Wear FEM Simulation
,”
Int. J. Mater. Form.
,
2
, pp.
543
546
.
29.
Attanasio
,
A.
,
Ceretti
,
E.
,
Rizzuti
,
S.
,
Umbrello
,
D.
, and
Micari
,
F.
,
2008
, “
3D Finite Element Analysis of Tool Wear in Machining
,”
CIRP Ann.—Manuf. Technol.
,
57
(
1
), pp.
61
64
.
30.
Filice
,
L.
,
Micari
,
M.
,
Settineri
,
L.
, and
Umbrello
,
D.
,
2007
, “
Wear Modelling in Mild Steel Orthogonal Cutting When Using Uncoated Carbide Tools
,”
Wear
,
242
(
5–6
), pp.
545
554
.
31.
Xie
,
L. J.
,
Schmidt
,
J.
,
Schmidt
,
C.
, and
Biesinger
,
F.
,
2005
, “
2D FEM Estimate of Tool Wear in Turning Operation
,”
Wear
,
258
(
10
), pp.
1479
1490
.
32.
Yen
,
Y. C.
,
Söhner
,
J.
,
Lilly
,
B.
, and
Altan
,
T.
,
2004
, “
Estimation of Tool Wear in Orthogonal Cutting Using the Finite Element Analysis
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
82
91
.
33.
Ducobu
,
F.
,
Arrazola
,
P. J.
,
Riviere-Lorphevre
,
E.
, and
Filippia
,
E.
,
2015
, “
Finite Element Prediction of the Tool Wear Influence in Ti6Al4V Machining
,”
Procedia CIRP
,
31
, pp.
124
129
.
34.
Li
,
K. M.
, and
Liang
,
S. Y.
,
2007
, “
Modelling of Cutting Forces in Near dry Machining Under Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1292
1301
.
35.
Chen
,
L.
,
El-Wardany
,
T. I.
, and
Harris
,
W. C.
,
2004
, “
Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses
,”
CIRP Ann.
,
53
(
1
), pp.
95
98
.
36.
Kagnaya
,
T.
,
Lambert
,
L.
,
Lazard
,
M.
,
Boher
,
C.
, and
Cutard
,
T.
,
2014
, “
Investigation and FEA-Based Simulation of Tool Wear Geometry and Metal Oxide Effect on Cutting Process Variables
,”
Simul. Modell. Pract. Theory
,
42
, pp.
84
97
.
37.
DEFORM-2DTM Version 10.0 (beta3), User’s Manual,
2009
, Scientific Forming Technologies Corporation, OH.
38.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti-6Al-4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
(
7
), pp.
1055
1070
.
39.
Brinksmeier
,
E.
,
Preuss
,
W.
, and
Riemer
,
O.
,
1995
, “
From Friction to Chip Removal: An Experimental Investigation of the Microcutting Process
,”
Proceedings of 3rd International Conference on Ultraprecision in Manufacturing Engineering
,
Germany
,
May 1994
.
40.
Liu
,
G.
,
Shah
,
S.
, and
Özel
,
T.
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041017
.
41.
Komanduri
,
R.
, and
Von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
9
(
2
), pp.
179
188
.
42.
MIAN
,
A. J.
,
2011
, “
Size Effect in Micromachining
,”
Ph.D. thesis
,
The University of Manchester, School of Mechanical, Aerospace and Civil Engineering
,
UK
.
43.
Sima
,
M.
, and
Özel
,
T.
,
2010
, “
Modified Material Constitutive Models for Serrated Ship Formation—Simulations and Experimental Validation in Machining of Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.
44.
Islam
,
M. A.
,
2012
, “
Determination of the Deformation State of Ti-6Al-4V Alloy Subject to Orthogonal Cutting
,”
Master thesis in Applied Science
,
University of Windsor
,
Windsor, Ontario, Canada
.
45.
Cotterell
,
M.
, and
Byrne
,
G.
,
2008
, “
Dynamics of Chip Formation During Orthogonal Cutting of Titanium Alloy Ti–6Al–4V
,”
CIRP Ann.—Manuf. Technol.
,
57
(
1
), pp.
93
96
.
46.
Nasr
,
M.
,
Ng
,
E. G.
, and
Elbestawi
,
M. A.
,
2007
, “
Modelling the Effects of Tool-Edge Radius on Residual Stresses When Orthogonal Cutting AISI 316L
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
401
411
.
47.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M’Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann.—Manuf. Technol.
,
60
(
2
), pp.
603
626
.
48.
Liu
,
C. R.
,
Lin
,
Z. C.
, and
Barash
,
M. M.
,
1984
, “
Thermal and Mechanical Stresses in the Workpiece During Machining
,”
Topic of High Speed Machining in the Proceedings of the ASME Winter Annual Meeting
,
New Orleans, LA
,
Dec. 9–14
, Production Engineering Division, Vol.
12
, No.
1
, pp.
181
191
.
49.
Tounsi
,
N.
, and
El-Wardany
,
T.
,
2015
, “
Finite Element Analysis of Chip Formation and Residual Stresses Induced by Sequential Cutting in Side Milling with Microns to Submicron Uncut Chip Thickness and Finite Cutting Edge Radius
,”
Adv. Manuf.
,
3
(
4
), pp.
309
322
.
You do not currently have access to this content.