Abstract

Glass fiber/epoxy resin composites (GF/EP) were prepared using one and three multiwalled carbon nanotube buckypapers (BPs) as a resistive element. Compared to the conventional hot compression molding process that demanded 4200 W to fabricate the GF/EP laminate, the proposed curing process consumed only 63 W, representing a saving power of 98.5%. The thermal distribution of the BP and their composites were recorded using an infrared thermometer. Differential scanning calorimetry (DSC) curves have not shown a residual cure, suggesting the curing process using the BP as a resistive element was effective. The cross section views of the laminates were analyzed by scanning electron microscopy (SEM), and the mechanical characterizations were performed by impulse excitation technique (IET), compression shear test (CST), and interlaminar shear strength (ILSS). The results demonstrated that the BP composites showed a good consolidation between the prepregs layers, and presented no significant variations in the mechanical tests compared to the traditional hot compression molding process. Nevertheless, dynamic mechanical analyses (DMA) showed a slight decrease in the BP composites’ storage moduli compared to GF/EP laminate.

References

1.
Nguyen
,
N.
,
Hao
,
A.
,
Park
,
J. G.
, and
Liang
,
R.
,
2016
, “
In Situ Curing and Out-of-Autoclave of Interply Carbon Fiber/Carbon Nanotube Buckypaper Hybrid Composites Using Electrical Current
,”
Adv. Eng. Mater.
,
18
(
11
), pp.
1906
1912
. 10.1002/adem.201600307
2.
Centea
,
T.
,
Grunenfelder
,
L. K.
, and
Nutt
,
S. R.
,
2015
, “
A Review of out-of-Autoclave Prepregs–Material Properties, Process Phenomena, and Manufacturing Considerations
,”
Compos. Part A: Appl. Sci. Manuf.
,
70
, pp.
132
154
. 10.1016/j.compositesa.2014.09.029
3.
Díez-Pascual
,
A. M.
,
Guan
,
J.
,
Simard
,
B.
, and
Gómez-Fatou
,
M. A.
,
2012
, “
Poly (Phenylene Sulphide) and Poly (Ether Ether Ketone) Composites Reinforced With Single-Walled Carbon Nanotube Buckypaper: I—Structure, Thermal Stability and Crystallization Behaviour
,”
Compos. Part A: Appl. Sci. Manuf.
,
43
(
6
), pp.
997
1006
. 10.1016/j.compositesa.2011.11.002
4.
Tanrattanakul
,
V.
, and
Jaroendee
,
D.
,
2006
, “
Comparison Between Microwave and Thermal Curing of Glass Fiber–Epoxy Composites: Effect of Microwave-Heating Cycle on Mechanical Properties
,”
J. Appl. Polym. Sci.
,
102
(
2
), pp.
1059
1070
. 10.1002/app.24245
5.
Rueggeberg
,
F. A.
,
Caughman
,
W. F.
, and
Curtis
,
J. W.
,
1994
, “
Effect of Light Intensity and Exposure Duration on Cure of Resin Composite
,”
Oper. Dent.
,
19
, p.
26
.
6.
Soesatyo
,
B.
,
Blicblau
,
A. S.
, and
Siores
,
E.
,
2000
, “
Effects of Microwave Curing Carbon Doped Epoxy Adhesive-Polycarbonate Joints
,”
Int. J. Adhes. Adhes.
,
20
(
6
), pp.
489
495
. 10.1016/S0143-7496(00)00020-8
7.
Sung
,
P.-C.
, and
Chang
,
S.-C.
,
2015
, “
The Adhesive Bonding With Buckypaper–Carbon Nanotube/Epoxy Composite Adhesives Cured by Joule Heating
,”
Carbon N Y
,
91
, pp.
215
223
. 10.1016/j.carbon.2015.04.081
8.
Lee
,
J.
,
Stein
,
I. Y.
,
Antunes
,
E. F.
,
Kessler
,
S. S.
, and
Wardle
,
B. L.
,
2015
, “
Out-of-Oven Curing of Polymeric Composites via Resistive Microheaters Comprised of Aligned Carbon Nanotube Networks
,”
20th International Conference on Composite Mater
,
Copenhagen
.
9.
Xu
,
X.
,
Zhang
,
Y.
,
Jiang
,
J.
,
Wang
,
H.
,
Zhao
,
X.
,
Li
,
Q.
, and
Lu
,
W.
,
2017
, “
In-situ Curing of Glass Fiber Reinforced Polymer Composites via Resistive Heating of Carbon Nanotube Films
,”
Compos. Sci. Technol.
,
149
, pp.
20
27
. 10.1016/j.compscitech.2017.06.001
10.
Abliz
,
D.
,
Duan
,
Y.
,
Steuernagel
,
L.
,
Xie
,
L.
,
Li
,
D.
, and
Ziegmann
,
G.
,
2013
, “
Curing Methods for Advanced Polymer Composites-a Review
,”
Polym. Polym. Compos.
,
21
, pp.
341
348
. 10.1177/096739111302100602
11.
Li
,
N.
,
Li
,
Y.
,
Hang
,
X.
, and
Gao
,
J.
,
2014
, “
Analysis and Optimization of Temperature Distribution in Carbon Fiber Reinforced Composite Materials During Microwave Curing Process
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
544
550
. 10.1016/j.jmatprotec.2013.10.012
12.
Tay
,
T. E.
,
Fink
,
B. K.
,
McKnight
,
S. H.
,
Yarlagadda
,
S.
, and
Gillespie Jr
,
J. W.
,
1999
, “
Accelerated Curing of Adhesives in Bonded Joints by Induction Heating
,”
J. Compos. Mater.
,
33
(
17
), pp.
1643
1664
. 10.1177/002199839903301704
13.
Liu
,
D.
,
Zhu
,
Y.
,
Ding
,
J.
,
Lin
,
X.
, and
Fan
,
X.
,
2015
, “
Experimental Investigation of Carbon Fiber Reinforced Poly(Phenylene Sulfide) Composites Prepared Using a Double-Belt Press
,”
Compos. Part B: Eng.
,
77
, pp.
363
370
. 10.1016/j.compositesb.2015.03.062
14.
Díez-Pascual
,
A. M.
,
Guan
,
J.
,
Simard
,
B.
, and
Gómez-Fatou
,
M. A.
,
2012
, “
Poly(Phenylene Sulphide) and Poly(Ether Ether Ketone) Composites Reinforced with Single-Walled Carbon Nanotube Buckypaper: II—Mechanical Properties, Electrical and Thermal Conductivity
,”
Compos. Part A: Appl. Sci. Manuf.
,
43
(
6
), pp.
1007
1015
. 10.1016/j.compositesa.2011.11.003
15.
Hussein
,
L.
,
Urban
,
G.
, and
Krüger
,
M.
,
2011
, “
Fabrication and Characterization of Buckypaper-Based Nanostructured Electrodes as a Novel Material for Biofuel Cell Applications
,”
Phys. Chem. Chem. Phys.
,
13
(
13
), pp.
5831
5839
. 10.1039/c0cp02254c
16.
Jiang
,
S.
,
Liu
,
C.
, and
Fan
,
S.
,
2014
, “
Efficient Natural-Convective Heat Transfer Properties of Carbon Nanotube Sheets and Their Roles on the Thermal Dissipation
,”
ACS Appl. Mater. Interfaces
,
6
(
5
), pp.
3075
3080
. 10.1021/am405491t
17.
Aliev
,
A. E.
,
Guthy
,
C.
,
Zhang
,
M.
,
Fang
,
S.
,
Zakhidov
,
A. A.
,
Fischer
,
J. E.
, and
Baughman
,
R. H.
,
2007
, “
Thermal Transport in MWCNT Sheets and Yarns
,”
Carbon N Y
,
45
(
15
), pp.
2880
2888
. 10.1016/j.carbon.2007.10.010
18.
Lee
,
J.
,
Ni
,
X.
,
Daso
,
F.
,
Xiao
,
X.
,
King
,
D.
,
Gómez
,
J. S.
,
Varela
,
T. B.
,
Kessler
,
S. S.
, and
Wardle
,
B. L.
,
2018
, “
Advanced Carbon Fiber Composite out-of-Autoclave Laminate Manufacture via Nanostructured out-of-Oven Conductive Curing
,”
Compos. Sci. Technol.
,
166
, pp.
150
159
. 10.1016/j.compscitech.2018.02.031
19.
Lee
,
J.
,
Stein
,
I. Y.
,
Kessler
,
S. S.
, and
Wardle
,
B. L.
,
2015
, “
Aligned Carbon Nanotube Film Enables Thermally Induced State Transformations in Layered Polymeric Materials
,”
ACS Appl. Mater. Interfaces
,
7
(
16
), pp.
8900
8905
. 10.1021/acsami.5b01544
20.
Ardila Rodriguez
,
L. A.
, and
Travessa
,
D. N.
,
2018
, “
Core/Shell Structure of TiO2 -Coated MWCNTs for Thermal Protection for High-Temperature Processing of Metal Matrix Composites
,”
Adv. Mater. Sci. Eng.
,
2018
, pp.
1
11
. 10.1155/2018/7026141
21.
Santos de Oliveira Junior
,
M.
,
Manzolli Rodrigues
,
B. V.
,
Marcuzzo
,
J. S.
,
Guerrini
,
L. M.
,
Baldan
,
M. R.
, and
Rezende
,
M. C.
,
2017
, “
A Statistical Approach to Evaluate the Oxidative Process of Electrospun Polyacrylonitrile Ultrathin Fibers
,”
J. Appl. Polym. Sci.
,
134
(
43
), pp.
1
10
. 10.1002/app.45458
22.
Rojas
,
J. A.
,
Ardila-Rodríguez
,
L. A.
,
Diniz
,
M. F.
,
Gonçalves
,
M.
,
Ribeiro
,
B.
, and
Rezende
,
M. C.
,
2019
, “
Highly Porous Multiwalled Carbon Nanotube Buckypaper Using Electrospun Polyacrylonitrile Nanofiber as a Sacrificial Material
,”
Heliyon
,
5
(
3
), p.
e01386
. 10.1016/j.heliyon.2019.e01386
23.
Rojas
,
J. A.
,
Ardila-Rodríguez
,
L. A.
,
Diniz
,
M. F.
,
Gonçalves
,
M.
,
Ribeiro
,
B.
, and
Rezende
,
M. C.
,
2019
, “
Optimization of Triton X-100 Removal and Ultrasound Probe Parameters in the Preparation of Multiwalled Carbon Nanotube Buckypaper
,”
Mater. Des.
,
166
, p.
107612
. 10.1016/j.matdes.2019.107612
24.
Schneider
,
K.
,
Lauke
,
B.
, and
Beckert
,
W.
,
2001
, “
Compression Shear Test (CST)—a Convenient Apparatus for the Estimation of Apparent Shear Strength of Composite Materials
,”
Appl. Compos. Mater.
,
8
(
1
), pp.
43
62
. 10.1023/A:1008919114960
25.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Progress Polym. Sci.
,
36
(
7
), pp.
914
944
. 10.1016/j.progpolymsci.2010.11.004
26.
Tessonnier
,
J. P.
,
Rosenthal
,
D.
,
Hansen
,
T. W.
,
Hess
,
C.
,
Schuster
,
M. E.
,
Blume
,
R.
,
Girgsdies
,
F.
,
Pfänder
,
N.
,
Timpe
,
O.
,
Su
,
D. S.
, and
Schlögl
,
R.
,
2009
, “
Analysis of the Structure and Chemical Properties of Some Commercial Carbon Nanostructures
,”
Carbon N Y
,
47
(
7
), pp.
1779
1798
. 10.1016/j.carbon.2009.02.032
27.
Kuznetsov
,
V. L.
,
Bokova-Sirosh
,
S. N.
,
Moseenkov
,
S. I.
,
Ishchenko
,
A. V.
,
Krasnikov
,
D. V.
,
Kazakova
,
M. A.
,
Romanenko
,
A. I.
,
Tkachev
,
E. N.
, and
Obraztsova
,
E. D.
,
2014
, “
Raman Spectra for Characterization of Defective CVD Multi-Walled Carbon Nanotubes
,”
Phys. Status Solidi
,
251
(
12
), pp.
2444
2450
. 10.1002/pssb.201451195
28.
Park
,
J. G.
,
Cheng
,
Q.
,
Lu
,
J.
,
Bao
,
J.
,
Li
,
S.
,
Tian
,
Y.
,
Liang
,
Z.
,
Zhang
,
C.
, and
Wang
,
B.
,
2012
, “
Thermal Conductivity of MWCNT/Epoxy Composites: The Effects of Length, Alignment and Functionalization
,”
Carbon N Y
,
50
(
6
), pp.
2083
2090
. 10.1016/j.carbon.2011.12.046
29.
Xue
,
Q. Z.
,
2006
, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
,
17
(
6
), pp.
1655
1660
. 10.1088/0957-4484/17/6/020
30.
De Villoria
,
R. G.
,
Yamamoto
,
N.
,
Miravete
,
A.
, and
Wardle
,
B. L.
,
2011
, “
Multi-physics Damage Sensing in Nano-Engineered Structural Composites
,”
Nanotechnology
,
22
(
18
), p.
185502
. 10.1088/0957-4484/22/18/185502
31.
Prolongo
,
S. G.
,
Moriche
,
R.
,
Del Rosario
,
G.
,
Jiménez-Suárez
,
A.
,
Prolongo
,
M. G.
, and
Ureña
,
A.
,
2016
, “
Joule Effect Self-Heating of Epoxy Composites Reinforced with Graphitic Nanofillers
,”
J. Polym. Res.
,
23
(
9
), p.
189
. 10.1007/s10965-016-1092-4
32.
Lyons
,
P. E.
,
De
,
S.
,
Blighe
,
F.
,
Nicolosi
,
V.
,
Pereira
,
L. F. C.
,
Ferreira
,
M. S.
, and
Coleman
,
J. N.
,
2008
, “
The Relationship Between Network Morphology and Conductivity in Nanotube Films
,”
J. Appl. Phys.
,
104
(
4
), pp.
44302
. 10.1063/1.2968437
33.
Liu
,
L.
,
Yang
,
Q.
, and
Shen
,
J.
,
2015
, “
Correlation Between Porosity and Electrical-Mechanical Properties of Carbon Nanotube Buckypaper with Various Porosities
,”
J. Nanomater.
,
16
, p.
448
. 10.1155/2015/945091
34.
Koratkar
,
N.
,
Modi
,
A.
,
Lass
,
E.
, and
Ajayan
,
P.
,
2004
, “
Temperature Effects on Resistance of Aligned Multiwalled Carbon Nanotube Films
,”
J. Nanosci. Nanotechnol.
,
4
(
7
), pp.
744
748
. 10.1166/jnn.2004.109
35.
Wang
,
F. X.
,
Liang
,
W. Y.
,
Wang
,
Z. Q.
,
Yang
,
B.
,
He
,
L.
, and
Zhang
,
K.
,
2018
, “
Preparation and Property Investigation of Multi-Walled Carbon Nanotube (MWCNT)/Epoxy Composite Films as High-Performance Electric Heating (Resistive Heating) Element
,”
Express Polym. Lett.
,
12
. 10.3144/expresspolymlett.2018.26
36.
Jeong
,
Y. G.
, and
An
,
J. E.
,
2014
, “
Effects of Mixed Carbon Filler Composition on Electric Heating Behavior of Thermally-Cured Epoxy-Based Composite Films
,”
Compos. Part A: Appl. Sci. Manuf.
,
56
, pp.
1
7
. 10.1016/j.compositesa.2013.09.003
37.
Hayaty
,
M.
,
Beheshty
,
M. H.
, and
Esfande
,
M.
,
2011
, “
A new Approach for Determination of gel Time of a Glass/Epoxy Prepreg
,”
J. Appl. Polym. Sci.
,
120
(
3
), pp.
1483
1489
. 10.1002/app.33251
38.
Costa
,
M. L.
,
de Paiva
,
J. M.
,
Botelho
,
E. C.
, and
Rezende
,
M. C.
,
2003
, “
Avaliação Térmica e Reológica do Ciclo de Cura do pré-Impregnado de Carbono/Epóxi
,”
Polímeros Ciência E Tecnol
,
13
. 10.1590/S0104-14282003000300009
39.
Rahaman
,
M. S. A.
,
Ismail
,
A. F.
, and
Mustafa
,
A.
,
2007
, “
A Review of Heat Treatment on Polyacrylonitrile Fiber
,”
Polym. Degrad. Stab.
,
92
(
8
), pp.
1421
1432
. 10.1016/j.polymdegradstab.2007.03.023
40.
Clingerman
,
M. L.
,
2001
, “
Development and Modelling of Electrically Conductive Composite Materials
,”
Tesis Doctoral
,
Michigan Technological University
.
41.
Paiva
,
M. C.
,
Kotasthane
,
P.
,
Edie
,
D. D.
, and
Ogale
,
A. A.
,
2003
, “
UV Stabilization Route for Melt-Processible PAN-Based Carbon Fibers
,”
Carbon N Y
,
41
(
7
), pp.
1399
409
. 10.1016/S0008-6223(03)00041-1
42.
Jang-Kyo
,
K.
, and
Yiu-Wing
,
M.
,
1998
,
Engineered Interfaces in Fiber Reinforced Composites
,
Elsevier
,
New York
.
43.
Greenhalgh
,
E.
,
2009
,
Failure Analysis and Fractography of Polymer Composites
,
Elsevier
,
New York
.
44.
Nielsen
,
M. W.
,
2012
, “
Predictions of Process Induced Shape Distortions and Residual Stresses in Large Fibre Reinforced Composite Laminates
,”
Tesis Doctoral. Ph. D. thesis
,
Technical University of Denmark
.
45.
Talreja
,
R.
, and
Varna
,
J.
,
2015
,
Modeling Damage, Fatigue and Failure of Composite Materials
,
Elsevier
,
New York
.
46.
Wu
,
F. Y.
, and
Cheng
,
H. M.
,
2005
, “
Structure and Thermal Expansion of Multi-Walled Carbon Nanotubes Before and After High Temperature Treatment
,”
J. Phys. D Appl. Phys.
,
38
(
24
), p.
4302
4307
. 10.1088/0022-3727/38/24/006
47.
Kalashnik
,
A. T.
,
Smirnova
,
T. N.
,
Chernova
,
O. P.
, and
Kozlov
,
V. V.
,
2010
, “
Properties and Structure of Polyacrylonitrile Fibers
,”
Polym. Sci. Ser A
,
52
(
11
), pp.
1233
1238
. 10.1134/S0965545X10110180
48.
Sepe
,
M.
,
1998
,
Dynamic Mechanical Analysis for Plastics Engineering
.
49.
Sharma
,
S.
,
Singh
,
B. P.
,
Chauhan
,
S. S.
,
Jyoti
,
J.
,
Arya
,
A. K.
,
Dhakate
,
S. R.
,
Kumar
,
V.
, and
Yokozeki
,
T.
,
2018
, “
Enhanced Thermomechanical and Electrical Properties of Multiwalled Carbon Nanotube Paper Reinforced Epoxy Laminar Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
104
, pp.
129
138
. 10.1016/j.compositesa.2017.10.023
50.
Wang
,
Z.
,
Liang
,
Z.
,
Wang
,
B.
,
Zhang
,
C.
, and
Kramer
,
L.
,
2004
, “
Processing and Property Investigation of Single-Walled Carbon Nanotube (SWNT) Buckypaper/Epoxy Resin Matrix Nanocomposites
,”
Compos. Part A: Appl. Sci. Manuf.
,
35
(
10
), pp.
1225
1232
. 10.1016/j.compositesa.2003.09.029
51.
Batista
,
N. L.
,
de Faria
,
M. C. M.
,
Iha
,
K.
,
de Oliveira
,
P. C.
, and
Botelho
,
E. C.
,
2015
, “
Influence of Water Immersion and Ultraviolet Weathering on Mechanical and Viscoelastic Properties of Polyphenylene Sulfide-Carbon Fiber Composites
,”
J. Thermoplast. Compos. Mater.
,
28
(
3
), pp.
340
356
. 10.1177/0892705713484747
52.
Njuguna
,
M. K.
,
Yan
,
C.
,
Hu
,
N.
,
Bell
,
J. M.
, and
Yarlagadda
,
P. K. D. V.
,
2012
, “
Sandwiched Carbon Nanotube Film as Strain Sensor
,”
Compos. Part B Eng.
,
43
(
6
), pp.
2711
2717
. 10.1016/j.compositesb.2012.04.022
53.
Nassiet
,
V.
,
Habas
,
J. P.
,
Hassoune-Rhabbour
,
B.
,
Baziard
,
Y.
, and
Petit
,
J. A.
,
2006
, “
Correlation Between Viscoelastic Behavior and Cooling Stresses in a Cured Epoxy Resin System
,”
J. Appl. Polym. Sci.
,
99
(
3
), pp.
679
690
. 10.1002/app.22540
54.
Brahatheeswaran
,
C.
, and
Gupta
,
V. B.
,
1993
, “
Internal Stress in a Cured Epoxy System
,”
Polymer (Guildf)
,
34
(
2
), pp.
289
294
. 10.1016/0032-3861(93)90079-P
55.
Standard A. D2344/D2344M-16
,
2016
,
Standard Test Method Short-Beam Shear Strength Polym Matrix Compos Mater Their Laminates
,
ASTM Int West Conshohocken
,
PA
.
56.
Li
,
N.
,
dong Wang
,
G.
,
Melly
,
S. K.
,
Peng
,
T.
,
Li
,
Y. C.
,
Di Zhao
,
Q.
, and
de Ji
,
S.
,
2019
, “
Interlaminar Properties of GFRP Laminates Toughened by CNTs Buckypaper Interlayer
,”
Compos. Struct.
,
208
, pp.
13
22
. 10.1016/j.compstruct.2018.10.002
You do not currently have access to this content.