Abstract

The scope of this research is to characterize and optimize the vibration-assisted ball burnishing of additively manufactured 18% Nickel Maraging steel for tooling applications. We evaluate the suitability of vibration-assisted ball burnishing as an alternative method to post-process additively manufactured tool steel. To do so, we assessed a single pass post-processing technique to enhance surface roughness, surface micro-hardness, and residual stress state. Results show that ultrasonic burnishing after age hardening functionalizes additively manufactured surfaces for tooling applications creating a beneficial compressive residual stress state on the surface. The surface micro-hardness (HV1) varied between 503 and 630 HV1, and the average surface roughness (Ra) varied between 1.31 and 0.14 µm, depending on process parameters with a maximum productivity rate of 41.66 cm2/min making it an alternative approach to functionalize additively manufactured tool components.

References

1.
Ituarte
,
Flores
,
Kretzschmar
,
N.
,
Chekurov
,
S.
,
Partanen
,
J.
, and
Tuomi
,
J.
,
2018
,
Additive Manufacturing—Developments in Training and Education
, 1st ed.,
E.
Pei
,
M.
Monzón
, and
A.
Bernard
, eds.,
Springer International Publishing
,
Cham
, pp.
99
112
.
2.
Laureijs
,
R. E.
,
Roca
,
J. B.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J. L.
, and
Fuchs
,
E. R. H.
,
2017
, “
Metal Additive Manufacturing: Cost Competitive Beyond low Volumes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081010
. 10.1115/1.4035420
3.
Flores Ituarte
,
I.
,
Chekurov
,
S.
,
Tuomi
,
J.
,
Mascolo
,
J. E.
,
Zanella
,
A.
,
Springer
,
P.
, and
Partanen
,
J.
,
2018
, “
Digital Manufacturing Applicability of a Laser Sintered Component for Automotive Industry: A Case Study
,”
Rapid Prototyp. J.
,
24
(
7
), pp.
1203
1211
. 10.1108/rpj-11-2017-0238
4.
Ballardini
,
R. M.
,
Flores Ituarte
,
I.
, and
Pei
,
E.
,
2018
, “
Printing Spare Parts Through Additive Manufacturing: Legal and Digital Business Challenges
,”
J. Manuf. Technol. Manag.
,
29
(
6
), pp.
958
982
. 10.1108/JMTM-12-2017-0270
5.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3-D Printing: Creating a map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
,
1–4
, pp.
64
76
. 10.1016/j.addma.2014.08.005
6.
Flores Ituarte
,
I.
,
Kretzschmar
,
N.
, and
Chekurov
,
S.
,
2019
, “
Measuring the value of DfAM in metal powder bed fusion direct part production
,”
EUSPEN Advancing Precision in Additive Manufacturing
, no.
September
.
7.
Kretzschmar
,
N.
,
Flores Ituarte
,
I.
, and
Partanen
,
J.
,
2018
, “
A Decision Support System for the Validation of Metal Powder bed-Based Additive Manufacturing Applications
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3679-3690
. https://doi.org/10.1007/s00170-018-1676-8
8.
Flores Ituarte
,
I.
,
Kretzschmar
,
N.
,
Hadi
,
A.
,
Chekurov
,
S.
,
Pedersen
,
D. B.
, and
Chaudhuri
,
A.
,
2019
, “
Implications of Lattice Structures on Economics and Productivity of Metal Powder bed Fusion
,”
Addit. Manuf.
,
12
, p.
100947
. https://doi.org/10.1016/j.addma.2019.100947
9.
Rännar
,
L.
,
Glad
,
A.
, and
Gustafson
,
C.
,
2007
, “
Efficient Cooling With Tool Inserts Manufactured by Electron Beam Melting
,”
Rapid Prototyp. J.
,
13
(
3
), pp.
128
135
. 10.1108/13552540710750870
10.
Petrovic
,
V.
,
Vicente Haro Gonzalez
,
J.
,
Jordá Ferrando
,
O.
,
Delgado Gordillo
,
J.
,
Ramón Blasco Puchades
,
J.
, and
Portolés Griñan
,
L.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
. 10.1080/00207540903479786
11.
Mazur
,
M.
,
Leary
,
M.
,
Mcmillan
,
M.
,
Elambasseril
,
J.
, and
Brandt
,
M.
,
2016
, “
SLM Additive Manufacture of H13 Tool Steel With Conformal Cooling and Structural Lattices
,”
Rapid Prototyp. J.s
,
22
(
3
), pp.
504
518
.
12.
Singh
,
S.
,
Ramakrishna
,
S.
, and
Singh
,
R.
,
2017
, “
Material Issues in Additive Manufacturing: A Review
,”
J. Manuf. Process.
,
25
, pp.
185
200
. 10.1016/j.jmapro.2016.11.006
13.
Mahyar Khorasani
,
A.
,
Gibson
,
I.
,
Goldberg
,
M.
, and
Littlefair
,
G.
,
2018
, “
Characterizing the Effect of Cutting Condition, Tool Path, and Heat Treatment on Cutting Forces of Selective Laser Melting Spherical Component in Five-Axis Milling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051011
. 10.1115/1.4039381
14.
Sealy
,
M. P.
,
Madireddy
,
G.
,
Williams
,
R. E.
,
Rao
,
P.
, and
Toursangsaraki
,
M.
,
2018
, “
Hybrid Processes in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
060801
. 10.1115/1.4038644
15.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
. 10.1115/1.4042108
16.
Kaynak
,
Y.
, and
Kitay
,
O.
,
2019
, “
The Effect of Post-Processing Operations on Surface Characteristics of 316L Stainless Steel Produced by Selective Laser Melting
,”
Addit. Manuf.
,
26
, pp.
84
93
. 10.1016/j.addma.2018.12.021
17.
Seifi
,
S. H.
,
Tian
,
W.
,
Doude
,
H.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2019
, “
Layer-Wise Modeling and Anomaly Detection for Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081013
. 10.1115/1.4043898
18.
Strong
,
D.
,
Kay
,
M.
,
Conner
,
B.
,
Wakefield
,
T.
, and
Manogharan
,
G.
,
2018
, “
Hybrid Manufacturing—Integrating Traditional Manufacturers with Additive Manufacturing (AM) Supply Chain
,”
Addit. Manuf.
,
21
, pp.
159
173
. 10.1016/j.addma.2018.03.010
19.
Flores Ituarte
,
I.
,
Khajavi
,
S. H.
, and
Partanen
,
J.
,
2016
, “
Challenges to Implementing Additive Manufacturing in Globalised Production Environments
,”
Int. J. Collab. Enterp.
,
5
(
3–4
), pp.
232
247
.
20.
Bai
,
Y.
,
Yang
,
Y.
,
Xiao
,
Z.
, and
Wang
,
D.
,
2017
, “
Selective Laser Melting of Maraging Steel : Mechanical Properties Development and Its Application in Mold
,”
Rapid Prototyp. J.
,
24
(
3
), pp.
623
629
. https://doi.org/10.1108/RPJ-05-2017-0104
21.
Bass
,
L.
,
Milner
,
J.
,
Gnäupel-Herold
,
T.
, and
Moylan
,
S.
,
2018
, “
Residual Stress in Additive Manufactured Nickel Alloy 625 Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061004
. https://doi.org/10.1115/1.4039063
22.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
. 10.1115/1.4028725
23.
Cutolo
,
A.
,
Neirinck
,
B.
,
Lietaert
,
K.
,
de Formanoir
,
C.
, and
Van Hooreweder
,
B.
,
2018
, “
Influence of Layer Thickness and Post-Process Treatments on the Fatigue Properties of CoCr Scaffolds Produced by Laser Powder bed Fusion
,”
Addit. Manuf.
,
23
, pp.
498
504
. https://doi.org/10.1016/j.addma.2018.07.008
24.
Leal-Muñoz
,
E.
,
Diez
,
E.
,
Perez
,
H.
, and
Vizan
,
A.
,
2018
, “
Identification of the Actual Process Parameters for Finishing Operations in Peripheral Milling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
084502
. 10.1115/1.4039917
25.
Ahn
,
D. G.
,
2011
, “
Applications of Laser Assisted Metal Rapid Tooling Process to Manufacture of Molding & Forming Tools—State of the art
,”
Int. J. Precis. Eng. Manuf.
,
12
(
5
), pp.
925
938
. 10.1007/s12541-011-0125-5
26.
Li
,
L.
,
Haghighi
,
A.
, and
Yang
,
Y.
,
2018
, “
A Novel 6-Axis Hybrid Additive-Subtractive Manufacturing Process: Design and Case Studies
,”
J. Manuf. Process.
,
33
, pp.
150
160
. 10.1016/j.jmapro.2018.05.008
27.
Grzesik
,
W.
, and
Zak
,
K.
,
2012
, “
Modification of Surface Finish Produced by Hard Turning Using Superfinishing and Burnishing Operations
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
315
322
. 10.1016/j.jmatprotec.2011.09.017
28.
Hiegemann
,
L.
, and
Erman Tekkaya
,
A.
,
2018
, “
Ball Burnishing Under High Velocities Using a New Rolling Tool Concept
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041008
. 10.1115/1.4037431
29.
Sartkulvanich
,
P.
,
Altan
,
T.
,
Jasso
,
F.
, and
Rodriguez
,
C.
,
2007
, “
Finite Element Modeling of Hard Roller Burnishing: An Analysis on the Effects of Process Parameters upon Surface Finish and Residual Stresses
,”
ASME J. Manuf. Sci. Eng. Trans.
,
129
(
4
), pp.
705
716
. 10.1115/1.2738121
30.
Jerez-Mesa
,
R.
,
Travieso-Rodriguez
,
J. A.
,
Gomez-Gras
,
G.
, and
Lluma-Fuentes
,
J.
,
2018
, “
Development, Characterization and Test of an Ultrasonic Vibration-Assisted Ball Burnishing Tool
,”
J. Mater. Process. Technol.
,
257
, pp.
203
212
. 10.1016/j.jmatprotec.2018.02.036
31.
Hocheng
,
H.
, and
Kuo
,
K. L.
,
2002
, “
Fundamental Study of Ultrasonic Polishing of Mold Steel
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
7
13
. 10.1016/S0890-6955(01)00099-2
32.
Salmi
,
M.
,
Huuki
,
J.
, and
Flores Ituarte
,
I.
,
2017
, “
The Ultrasonic Burnishing of Cobalt-Chrome and Stainless Steel Surface Made by Additive Manufacturing
,”
Prog. Addit. Manuf.
,
2
(
1–2
). 10.1007/s40964-017-0017-z
33.
Teramachi
,
A.
, and
Yan
,
J.
,
2019
, “
Improving the Surface Integrity of Additive-Manufactured Metal Parts by Ultrasonic Vibration-Assisted Burnishing
,”
J. Micro Nano-Manufacturing.
,
7
, pp.
131
134
. 10.3850/978-981-11-2728-1_13
34.
EOS GmbH
,
2011
, “
Material Data Sheet—EOS MaragingSteel MS1
”.
35.
Sha
,
W.
, and
Guo
,
Z.
,
2009
,
Maraging Steels: Modelling Of Microstructure, Properties And Applications
, 1st ed.,
Woodhead Publishing
.
36.
Jägle
,
E. A.
,
Choi
,
P.-P.
,
Van Humbeeck
,
J.
, and
Raabe
,
D.
,
2014
, “
Precipitation and Austenite Reversion Behavior of a Maraging Steel Produced by Selective Laser Melting
,”
J. Mater. Res.
,
29
(
17
), pp.
2072
2079
. 10.1557/jmr.2014.204
37.
Huuki
,
J.
, and
Laakso
,
S. V. A.
,
2017
, “
Surface Improvement of Shafts by the Diamond Burnishing and Ultrasonic Burnishing Techniques
,”
Int. J. Mach. Mach. Mater.
,
19
(
3
), pp.
246
258
.
38.
Jerez-Mesa
,
R.
,
Landon
,
Y.
,
Travieso-Rodriguez
,
J. A.
,
Dessein
,
G.
,
Lluma-Fuentes
,
J.
, and
Wagner
,
V.
,
2018
, “
Topological Surface Integrity Modification of AISI 1038 Alloy After Vibration-Assisted Ball Burnishing
,”
Surf. Coatings Technol.
,
349
, pp.
364
377
. 10.1016/j.surfcoat.2018.05.061
39.
El-Khabeery
,
M. M.
, and
El-Axir
,
M. H.
,
2001
, “
Experimental Techniques for Studying the Effects of Milling Roller-Burnishing Parameters on Surface Integrity
,”
Int. J. Mach. Tools Manuf.
,
41
(
12
), pp.
1705
1719
. 10.1016/S0890-6955(01)00036-0
40.
Flores Ituarte
,
I.
,
Coatanea
,
E.
,
Salmi
,
M.
,
Tuomi
,
J.
, and
Partanen
,
J.
,
2015
, “
Additive Manufacturing in Production: A Study Case Applying Technical Requirements
,”
Phys. Procedia
,
78
, pp.
357
366
. 10.1016/j.phpro.2015.11.050
41.
Mahajan
,
D.
, and
Tajane
,
R.
,
2013
, “
A Review on Ball Burnishing Process
,”
Int. J. Sci. Res. Publ.
,
3
(
4
), pp.
1
8
.
42.
Chomienne
,
V.
,
Valiorgue
,
F.
,
Rech
,
J.
, and
Verdu
,
C.
,
2016
, “
Influence of Ball Burnishing on Residual Stress Profile of a 15-5PH Stainless Steel
,”
CIRP J. Manuf. Sci. Technol.
,
13
, pp.
90
96
. 10.1016/j.cirpj.2015.12.003
43.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
, 1st ed.,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
44.
Asiltürk
,
I.
, and
Neşeli
,
S.
,
2012
, “
Multi Response Optimisation of CNC Turning Parameters Via Taguchi Method-Based Response Surface Analysis
,”
Meas. J. Int. Meas. Confed.
,
45
(
4
), pp.
785
794
. 10.1016/j.measurement.2011.12.004
45.
Kwak
,
J. S.
,
2005
, “
Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
45
(
3
), pp.
327
334
. 10.1016/j.ijmachtools.2004.08.007
46.
Haftka
,
R. T.
,
Queipo
,
N. V.
,
Goel
,
T.
,
Vaidyanathan
,
R.
,
Kevin Tucker
,
P.
, and
Shyy
,
W.
,
2005
, “
Surrogate-based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
. 10.1016/j.paerosci.2005.02.001
47.
Hemming
,
B.
,
Korpelainen
,
V.
,
Seppä
,
J.
, and
Lassila
,
A.
,
2009
, “
Traceability for Surface Roughness Measurement by Metrology AFM
,”
Proceedings of the Euspen International Conference
, pp.
243
246
.
48.
Mercelis
,
P.
, and
Kruth
,
J.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
. 10.1108/13552540610707013
49.
Rangaswamy
,
P.
,
Griffith
,
M. L.
,
Prime
,
M. B.
,
Holden
,
T. M.
,
Rogge
,
R. B.
,
Edwards
,
J. M.
, and
Sebring
,
R. J.
,
2005
, “
Residual Stresses in LENS® Components Using Neutron Diffraction and Contour Method
,”
Mater. Sci. Eng. A
,
399
(
1–2
), pp.
72
83
. 10.1016/j.msea.2005.02.019
50.
Vrancken
,
B.
,
2016
, “
Study of Residual Stresses in Selective Laser Melting
”.
51.
CAB-Inc.
,
2014
,
Surface Roughness Produced by Common Production Methods per Machinery’s Handbook
, 25th ed.,
CAB-Incorporated
,
Buford, GA
, p.
708
.
52.
NiDI
,
1976
, “18 Per Cent Nickel Maraging Steels—Engineering properties,”
2525 Meridian Parkway, Durham
,
NC
.
53.
Chaiprapat
,
S. S.
, and
Rujikietgumjorn
,
S.
,
2006
, “
A Method to Analyze Effects of Surface Variational Model on Positional Geometric Variability
,”
Songklanakarin J. Sci. Technol.
,
28
(
1
), pp.
169
179
.
You do not currently have access to this content.