Support structures are always associated with laser-based powder-bed fusion (L-PBF) processes, particularly for additive manufacturing of metallic components of complex geometry with overhang structures and for reducing component distortion. Existing L-PBF processes use the same material for both built components and support structures. Removing the metallic support structures from L-PBF fabricated components by the traditional post-treatment method is difficult and time-consuming. This paper demonstrates an easy-to-remove composite support material and related processing procedures in an L-PBF process. For additive manufacturing of 316L components, a SiC-316L composite was developed as a support material. This is combined with hybrid powder-bed and point-to-point selective powder deposition for the additive manufacturing of the components. A specific experimental multiple material L-PBF system was developed and employed to produce 316L components with SiC-316L composite as support structures successfully. An interfacial grid structure using 316L steel was used to avoid component contamination and inferior surface roughness of the 316L component. The experimental results demonstrated that the SiC-316L composite with 40 vol. % 320 grit SiC was feasible to be applied as a support material for 316L stainless steel component additive manufacture in a modified PBF system.

References

1.
Xia
,
M.
,
Gu
,
D.
,
Yu
,
G.
,
Dai
,
D.
,
Chen
,
H.
, and
Shi
,
Q.
,
2016
, “
Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.,
109
(
1
), pp.
147
157
.
2.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.,
2
(
4
), p.
041101
.
3.
Laumer
,
T.
,
Wudy
,
K.
,
Drexler
,
M.
,
Amend
,
P.
,
Roth
,
S.
,
Drummer
,
D.
, and
Schmidt
,
M.
,
2014
, “
Fundamental Investigation of Laser Beam Melting of Polymers for Additive Manufacture
,”
J. Laser Appl.,
26
(
1
), pp.
042003
.
4.
Wang
,
D.
,
Yang
,
Y.
,
Yi
,
Z.
, and
Su
,
X.
,
2013
, “
Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process
,”
Int. J. Adv. Manuf. Technol.,
65
(
9–12
), pp.
1471
1484
.
5.
Morgan
,
D.
,
Agba
,
E.
, and
Hill
,
C.
,
2017
, “
Support Structure Development and Initial Results for Metal Powder Bed Fusion Additive Manufacturing
,”
Procedia Manuf.,
10
(
1
), pp.
819
830
.
6.
Lefky
,
C. S.
,
Zucker
,
B.
,
Wright
,
D.
,
Nassar
,
A. R.
,
Simpson
,
T. W.
, and
Hildreth
,
O. J.
,
2017
, “
Dissolvable Supports in Powder Bed Fusion-Printed Stainless Steel
,”
3D Print. Addit. Manuf.,
4
(
1
), pp.
3
11
.
7.
Hildreth
,
O. J.
,
Nassar
,
A. R.
,
Chasse
,
K. R.
, and
Simpson
,
T. W.
,
2016
, “
Dissolvable Metal Supports for 3D Direct Metal Printing
,”
3D Print. Addit. Manuf.,
3
(
2
), pp.
90
97
.
8.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
CAD Comput. Aided Des.,
81
(
1
), pp.
1
13
.
9.
Blunk
,
H.
,
Möller
,
M.
,
Johannes Lindecke
,
P. N.
,
Emmelmann
,
C.
, and
Wenzl
,
J.-P.
,
2018
, “
Optimization of Support Structures for the Laser Additive Manufacturing of TiAl6V4 Parts
,”
Procedia CIRP
,
74
(
1
), pp.
53
58
.
10.
Baskett
,
R.
,
2017
,
Effects of Support Structure Geometry on SLM Induced Residual Stresses in Overhanging Features
,
California Polytechnic State University
,
San Luis Obispo, CA
.
11.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
12.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Shoufeng
,
Y.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1 : A Review
,”
Virtual Phys. Prototyp.,
8
(
1
), pp.
19
50
.
13.
Sing
,
S. L.
,
Wiria
,
F. E.
, and
Yeong
,
W. Y.
,
2018
, “
Selective Laser Melting of Titanium Alloy With 50 wt% Tantalum: Effect of Laser Process Parameters on Part Quality
,”
Int. J. Refract. Met. Hard Mater.,
77
(
1
), pp.
120
127
.
14.
Shuai
,
C.
,
Xue
,
L.
,
Gao
,
C.
,
Yang
,
Y.
,
Peng
,
S.
, and
Zhang
,
Y.
,
2018
, “
Selective Laser Melting of Zn–Ag Alloys for Bone Repair: Microstructure, Mechanical Properties and Degradation Behaviour
,”
Virtual Phys. Prototyp.,
13
(
3
), pp.
146
154
.
15.
Shah
,
K.
,
2011
,
Laser Direct Metal Deposition of Dissimilar and Functionally Graded Alloys
,
The University of Manchester
,
Manchester
.
16.
Li
,
L.
,
Syed
,
W. U. H.
, and
Pinkerton
,
A. J.
,
2006
, “
Rapid Additive Manufacturing of Functionally Graded Structures Using Simultaneous Wire and Powder Laser Deposition
,”
Virtual Phys. Prototyp.,
1
(
4
), pp.
217
225
.
17.
Gualtieri
,
T.
, and
Bandyopadhyay
,
A.
,
2018
, “
Additive Manufacturing of Compositionally Gradient Metal-Ceramic Structures: Stainless Steel to Vanadium Carbide
,”
Mater. Des.,
139
(
1
), pp.
419
428
.
18.
Bandyopadhyay
A.
,
Bose
S.
,
Gualtieri
T.
, and
Zhang
Y.
,
2017
, “
Additive Manufacturing of Composite Materials With Composition Gradient
,” US20170361600A1.
19.
Regenfuss
,
P.
,
Streek
,
A.
,
Hartwig
,
L.
,
Klötzer
,
S.
,
Brabant
,
T.
,
Horn
,
M.
,
Ebert
,
R.
, and
Exner
,
H.
,
2007
, “
Principles of Laser Micro Sintering
,”
Rapid Prototyp. J.,
13
(
1
), pp.
204
212
.
20.
Sing
,
S. L.
,
Lam
,
L. P.
,
Zhang
,
D. Q.
,
Liu
,
Z. H.
, and
Chua
,
C. K.
,
2015
, “
Interfacial Characterization of SLM Parts in Multi-Material Processing: Intermetallic Phase Formation Between AlSi10Mg and C18400 Copper Alloy
,”
Mater. Charact.,
107
(
1
), pp.
220
227
.
21.
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Sing
,
S. L.
,
Chua
,
C. K.
, and
Loh
,
L. E.
,
2014
, “
Interfacial Characterization of SLM Parts in Multi-Material Processing: Metallurgical Diffusion Between 316L Stainless Steel and C18400 Copper Alloy
,”
Mater. Charact.,
94
(
1
), pp.
116
125
.
22.
Demir
,
A. G.
, and
Previtali
,
B.
,
2017
, “
Multi-Material Selective Laser Melting of Fe/Al-12Si Components
,”
Manuf. Lett.,
11
(
1
), pp.
8
11
.
23.
Wei
,
C.
,
Li
,
L.
,
Zhang
,
X.
, and
Chueh
,
Y.-H.
,
2018
, “
3D Printing of Multiple Metallic Materials by Selective Laser Melting
,”
CIRP Ann.
,
67
(
1
), pp.
245
248
.
24.
Smith
,
W. F.
,
1996
,
Principles of Materials Science and Engineering
,
McGraw-Hill
,
New York
.
25.
Wilson
,
S.
, and
Ball
,
A.
,
1993
, “
Performance of Metal Matrix Composites in Various Tribological Conditions
,”
Compos. Mater. Ser.,
8
(
1
), pp.
311
366
.
26.
Ashby
,
M. F.
,
1966
, “
Work Hardening of Dispersion-Hardened Crystals
,”
Philos. Mag. A J. Theor. Exp. Appl. Phys.,
14
(
132
), pp.
1157
1178
.
27.
Renishaw
, SS 316L-0407 Powder for Additive Manufacturing, * H-5800-3001-03-A *,
2001
(2001)
3
4
.
28.
Sainte-Catherine
,
C.
,
Jeandin
,
M.
,
Kechemair
,
D.
,
Ricaud
,
J.-P.
, and
Sabatier
,
L.
,
1991
, “
Study of Dynamic Absorptivity at 10.6 µm (CO2) and 1.06 µm (Nd-YAG) Wavelengths as a Function of Temperature
,”
J. Phys. IV France
,
1
(
C7
), pp.
C7-151
C7-157
.
29.
Simchi
,
A.
, and
Pohl
,
H.
,
2003
, “
Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder
,”
Mater. Sci. Eng. A
,
359
(
1
), pp.
119
128
.
30.
Leary
,
M.
,
Mazur
,
M.
,
Elambasseril
,
J.
,
McMillan
,
M.
,
Chirent
,
T.
,
Sun
,
Y.
,
Qian
,
M.
,
Easton
,
M.
, and
Brandt
,
M.
,
2016
, “
Selective Laser Melting (SLM) of AlSi12Mg Lattice Structures
,”
Mater. Des.,
98
(
1
), pp.
344
357
.
31.
Sun
,
Z.
,
Tan
,
X.
,
Tor
,
S. B.
, and
Yeong
,
W. Y.
,
2016
, “
Selective Laser Melting of Stainless Steel 316L With low Porosity and High Build Rates
,”
Mater. Des.,
104
(
1
), pp.
197
204
.
32.
Newey
,
C.
,
1990
,
Series Preface BT—Materials Principles and Practice
,
Butterworth-Heinemann
,
London
, p.
5
.
33.
Juste
,
E.
,
Petit
,
F.
,
Lardot
,
V.
, and
Cambier
,
F.
,
2014
, “
Shaping of Ceramic Parts by Selective Laser Melting of Powder bed
,”
J. Mater. Res.,
29
(
17
), pp.
2086
2094
.
34.
Su
,
X.
, and
Yang
,
Y.
,
2012
, “
Research on Track Overlapping During Selective Laser Melting of Powders
,”
J. Mater. Process. Technol.,
212
(
10
), pp.
2074
2079
.
35.
Schiepers
,
René C J
,
van Loo
,
Frans J J
, and
de With
,
Gijsbertus
,
1988
, “
Reactions Between α-Silicon Carbide Ceramic and Nickel or Iron
,”
J. Am. Ceram. Soc.,
71
(
6
), pp.
C-284
C-287
.
36.
Gomiero
,
P.
,
Brechet
,
Y.
,
Louchet
,
F.
,
Tourabi
,
A.
, and
Wack
,
B.
,
1992
, “
Microstructure and mechanical properties of a 2091 AlLi alloy—II. Mechanical properties: Yield stress and work hardening
,”
Acta Metallurgica et Materialia
,
40
(
4
), pp.
857
861
.
37.
Ma
,
Y. P.
,
Li
,
X. L.
,
Wang
,
C. H.
, and
Yang
,
L.
,
2012
, “
Interface Reaction Study of SiC Reinforced Mn13 Composite Synthesised by Metal Infiltration
,”
Int. J. Cast Met. Res.
,
25
, pp.
251
255
.
38.
Peng
,
J. H.
, and
Chen
,
G. L.
,
2003
, “
Effect of Testing Environment on Fracturing Behavior of Fe3Si Based Alloy
,”
Acta Metall. Sin.,
16
(
2
), pp.
104
109
.
39.
Lipinski
,
P.
,
Barbas
,
A.
, and
Bonnet
,
A. S.
,
2013
, “
Fatigue Behavior of Thin-Walled Grade 2 Titanium Samples Processed by Selective Laser Melting. Application to Life Prediction of Porous Titanium Implants
,”
J. Mech. Behav. Biomed. Mater.,
28
(
4
), pp.
274
290
.
40.
Calignano
,
F.
,
2018
, “
Investigation of the Accuracy and Roughness in the Laser Powder Bed Fusion Process
,”
Virtual Phys. Prototyp.,
13
(
2
), pp.
97
104
.
41.
Salmi
,
A.
,
Calignano
,
F.
,
Galati
,
M.
, and
Atzeni
,
E.
,
2018
, “
An Integrated Design Methodology for Components Produced by Laser Powder Bed Fusion (L-PBF) Process
,”
Virtual Phys. Prototyp.,
13
(
3
), pp.
191
202
.
You do not currently have access to this content.