The honeycomb sandwich structure has been widely used in the aerospace industry due to its high specific strength and stiffness. However, the machining defects of the aluminum honeycomb core (AHC) have become the key factor that restricts its application. In this paper, the defects' characteristics including the formation mechanism, distribution characteristic, and cutting process of honeycomb cell walls during AHC milling process were experimentally investigated. Furthermore, using normalized Cockcroft and Latham ductile fracture criterion and Johnson–Cook (JC) constitutive model, the numerical simulation of the AHC machining process was conducted concerning the entrance angle. It is indicated that six categories of milling defects are obtained and the quantity as well as distribution regularity of AHC milling defects are determined by the double effects of both the entrance angle and cutting force. Most of the surface defects of honeycomb materials were found concentrated in three regions, named by zones I–III, in which extruding, shear, and tensile deformation was mainly generated, respectively. Besides, the finite element simulation results also agree well with the experimental findings. Finally, a novel optimization method to avoid defects in the aforementioned regions by controlling the entrance angle of all the honeycomb walls during the cutting process was proposed in this paper. Meanwhile, the optimal control equations of the entrance angle for all cell walls were derived. This method was verified by milling experiments at last and the results showed that the optimization effect was obvious since the quality of the machined surface was greatly improved.

References

1.
Zenkert
,
D.
,
1997
,
Introduction to Sandwich Construction
,
Engineering Materials Advisory Services Ltd
, Worcestershire, UK.
2.
Klocke
,
F.
,
Soo
,
S. L.
,
Karpuschewski
,
B.
,
Webster
,
A. J.
,
Novovice
,
D.
,
Elfizyf
,
A.
,
Axinte
,
A. D.
, and
Tönissena
,
S.
,
2015
, “
Abrasive Machining of Advanced Aerospace Alloys and Composites
,”
CIRP Ann.-Manuf. Technol.
,
64
(
2
), pp.
581
604
.
3.
Wang
,
J.
,
Gao
,
H.
,
Ding
,
L.
,
Xie
,
Y.
,
Song
,
B.
,
Ma
,
J.
,
Lin
,
M.
, and
Sun
,
R.
,
2016
, “
Enhancement of Tensile Strength of Embedded Parts in Carbon Fiber-Reinforced Plastic/Aluminum Honeycomb Sandwich Structures for Vehicle
,”
Compos. Struct.
,
152
, pp.
800
806
.
4.
Lee, W. E.,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
5.
Chen
,
D. H.
, and
Ozaki
,
S.
,
2009
, “
Stress Concentration Due to Defects in a Honeycomb Structure
,”
Compos. Struct.
,
89
(
1
), pp.
52
59
.
6.
Liu
,
L.
,
Wang
,
H.
, and
Guan
,
Z.
,
2015
, “
Experimental and Numerical Study on the Mechanical Response of Nomex Honeycomb Core Under Transverse Loading
,”
Compos. Struct.
,
121
, pp.
304
314
.
7.
Ivañez
,
I.
,
Fernandez-Cañadas
,
L. M.
, and
Sanchez-Saez
,
S.
,
2017
, “
Compressive Deformation and Energy-Absorption Capability of Aluminium Honeycomb Core
,”
Compos. Struct.
,
174
, pp.
123
133
.
8.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. A-Math. Phys.
,
382
(
1782
), pp.
25
42
.
9.
Ashby
,
M. F.
, and
Medalist
,
R. F. M.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14
(
9
), pp.
1755
1769
.
10.
Ashab
,
A. S. M.
,
Ruan
,
D.
,
Lu
,
G.
,
Xu
,
S.
, and
Wen
,
C.
,
2015
, “
Experimental Investigation of the Mechanical Behavior of Aluminum Honeycombs Under Quasi-Static and Dynamic Indentation
,”
Mater. Des.
,
74
, pp.
138
149
.
11.
Fard
,
M. Y.
,
Sadat
,
S. M.
,
Raji
,
B. B.
, and
Chattopadhyay
,
A.
,
2014
, “
Damage Characterization of Surface and Sub-Surface Defects in Stitch-Bonded Biaxial Carbon/Epoxy Composites
,”
Compos.: Part B
,
56
, pp.
821
829
.
12.
Abbadi
,
A.
,
Tixier
,
C.
,
Gilgert
,
J.
, and
Azari
,
Z.
,
2015
, “
Experimental Study on the Fatigue Behaviour of Honeycomb Sandwich Panels With Artificial Defects
,”
Compos. Struct.
,
120
, pp.
394
405
.
13.
Chen
,
D. H.
, and
Masuda
,
K.
,
2017
, “
Estimation of Stress Concentration Due to Defects in a Honeycomb Core
,”
Eng. Fract. Mech.
,
172
, pp.
61
72
.
14.
Jahromi
,
A. S.
, and
Bahr
,
B.
,
2010
, “
An Analytical Method for Predicting Cutting Forces in Orthogonal Machining of Unidirectional Composites
,”
Compos. Sci. Technol.
,
70
(
16
), pp.
2290
2297
.
15.
Rao
,
G. V. G.
,
Mahajan
,
P.
, and
Bhatnagar
,
N.
,
2007
, “
Machining of UD-GFRP Composites Chip Formation Mechanism
,”
Compos. Sci. Technol.
,
67
(
11–12
), pp.
2271
2281
.
16.
Karimi
,
N. Z.
,
Minak
,
G.
, and
Kianfar
,
P.
,
2015
, “
Analysis of Damage Mechanisms in Drilling of Composite Materials by Acoustic Emission
,”
Compos. Struct.
,
131
, pp.
107
114
.
17.
Davim
,
J. P.
,
2010
,
Machining Composite Materials
,
Indian Society of Technical Education
, London.
18.
Astakhov
,
V. P.
, and
Outeiro
,
J. C.
,
2008
,
Machining: Fundamentals and Recent Advances
, Springer, New York.
19.
Haddad
,
M.
,
Zitoune
,
R.
,
Eyma
,
F.
, and
Castanie
,
B.
,
2014
, “
Study of the Surface Defects and Dust Generated During Trimming of CFRP: Influence of Tool Geometry, Machining Parameters and Cutting Speed Range
,”
Compos. Part A-Appl S
,
66
, pp.
142
154
.
20.
Abrao
,
A. M.
,
Campos Rubio
,
J. C.
,
Faria
,
P. E.
, and
Davim
,
J. P.
,
2008
, “
The Effect of Cutting Tool Geometry on Thrust Force and Delamination When Drilling Glass Fibre Reinforced Plastic Composite
,”
Mater. Des.
,
29
(
2
), pp.
508
513
.
21.
Xu
,
J.
,
An
,
Q.
, and
Chen
,
M.
,
2014
, “
A Comparative Evaluation of Polycrystalline Diamond Drills in Drilling High-Strength T800S/250F CFRP
,”
Compos. Struct.
,
117
, pp.
71
82
.
22.
Wang
,
D. H.
,
Ramulu
,
M.
, and
Arola
,
D.
,
1995
, “
Orthogonal Cutting Mechanisms of Graphite/Epoxy Composite—Part I: Unidirectional Laminate
,”
Int. J. Mach. Tool Manuf.
,
35
(
12
), pp.
1623
1638
.
23.
Wang
,
D. H.
,
Ramulu
,
M.
, and
Arola
,
D.
,
1995
, “
Orthogonal Cutting Mechanisms of Graphite/Epoxy Composite—Part II: Multi-Directional Laminate
,”
Int. J. Mach. Tool Manuf.
,
35
(
12
), pp.
1639
1648
.
24.
Davim
,
J. P.
, and
Reis
,
P.
,
2003
, “
Study of Delamination in Drilling Carbon Fiber Reinforced Plastics (CFRP) Using Design Experiments
,”
Compos. Struct.
,
59
(
4
), pp.
481
487
.
25.
Khashaba
,
U. A.
, and
El-Keran
,
A. A.
,
2017
, “
Drilling Analysis of Thin Woven Glass-Fiber Reinforced Epoxy Composites
,”
J. Mater. Process. Technol.
,
249
, pp.
415
425
.
26.
Gaitonde
,
V. N.
,
Karnik
,
S. R.
,
Rubio
,
J. C.
,
Correia
,
A. E.
,
Abrao
,
A. M.
, and
Davim
,
J. P.
,
2008
, “
Analysis of Parametric Influence on Delamination in High-Speed Drilling of Carbon Fiber Reinforced Plastic Composites
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
431
438
.
27.
Rubio
,
J. C.
,
Abrao
,
A. M.
,
Faria
,
P. E.
,
Correia
,
A. E.
, and
Davim
,
J. P.
,
2008
, “
Effects of High Speed in the Drilling of Glass Fibre Reinforced Plastic: Evaluation of the Delamination Factor
,”
Int. J. Mach. Tools Manuf.
,
48
(
6
), pp.
715
720
.
28.
Krishnaraj
,
V.
,
Prabukarthi
,
A.
,
Ramanathan
,
A.
,
Elanghovan
,
N.
,
Kumar
,
M. S.
,
Zitoune
,
R.
, and
Davim
,
J. P.
,
2012
, “
Optimization of Machining Parameters at High Speed Drilling of Carbon Fiber Reinforced Plastic (CFRP) Laminates
,”
Compos.: Part B
,
43
(
4
), pp.
1791
1799
.
29.
Nelson
,
S.
,
English
,
S.
, and
Briggs
,
T.
,
2016
, “
Composite Laminate Failure Parameter Optimization Through Four-Point Flexure Experimentation and Analysis
,”
Compos.: Part B
,
97
, pp.
92
102
.
30.
Jain
,
N. K.
,
Jain
,
V. K.
, and
Deb
,
K.
,
2007
, “
Optimization of Process Parameters of Mechanical Type Advanced Machining Processes Using Genetic Algorithms
,”
Int. J. Mach. Tool Manuf.
,
47
(
6
), pp.
900
919
.
31.
Lin
,
J. T.
,
Bhattacharyya
,
D.
, and
Kecman
,
V.
,
2003
, “
Multiple Regression and Neural Networks Analyses in Composites Machining
,”
Compos. Sci. Technol.
,
63
(
3–4
), pp.
539
548
.
32.
Davim
,
J. P.
,
Rubio
,
J. C.
, and
Abrão
,
A. M.
,
2007
, “
A Novel Approach Based on Digital Image Analysis to Evaluate the Delamination Factor After Drilling Composite Laminates
,”
Compos. Sci. Technol.
,
67
(
9
), pp.
1939
1945
.
33.
Hassan
,
G. A.
, and
Suliman
,
S. M. A.
,
1990
, “
Experimental Modelling and Optimization of Turning Medium Carbon Steel
,”
Int. J. Prod. Res.
,
28
(
6
), pp.
1057
1065
.
34.
Grzesik
,
W.
, and
Brol
,
S.
,
2003
, “
Hybrid Approach to Surface Roughness Evaluation in Multistage Machining Processes
,”
J. Mater. Process. Technol.
,
134
(
2
), pp.
265
272
.
35.
Kamatala
,
M. K.
,
Baumgartner
,
E. T.
, and
Moon
,
K. S.
,
1996
, “
Turned Surface Finish Prediction Based on Fuzzy Logic Theory
,”
20th International Conference on Computer and Industrial Engineering
,
Miami, FL
,
Mar. 3–6
, pp.
101
104
.
36.
Ip
,
W. L. R.
,
1998
, “
A Fuzzy Basis Material Removal Optimization Strategy for Sculptured Surface Machining Using Ball-Nosed Cutters
,”
Int. J. Prod. Res.
,
36
(
9
), pp.
2553
2571
.
37.
Qiu
,
K.
,
Ming
,
W.
,
Shen
,
L.
,
An
,
Q.
, and
Chen
,
M.
,
2017
, “
Study on the Cutting Force in Machining of Aluminum Honeycomb Core Material
,”
Compos. Struct.
,
164
, pp.
58
67
.
38.
Rion
,
J.
,
Leterrier
,
Y.
, and
Månson
,
J. A. E.
,
2008
, “
Prediction of the Adhesive Fillet Size for Skin to Honeycomb Core Bonding in Ultra-Light Sandwich Structures
,”
Compos. Part A
,
39
(
9
), pp.
1547
1555
.
39.
Gandy
,
H. T. N.
,
2012
, “
Adhesiveless Honeycomb Sandwich Structure With Carbon Graphite Prepreg for Primary Structural Application: A Comparative Study to the Use of Adhesive Film
,” Doctoral dissertation, Wichita State University, Wichita, KS.
40.
Zitoune
,
R.
,
Mansori
,
M. E.
, and
Krishnaraj
,
V.
,
2013
, “
Tribo-Functional Design of Double Cone Drill Implications in Tool Wear During Drilling of Copper Mesh/CFRP/Woven Ply
,”
Wear
,
302
(
1–2
), pp.
1560
1567
.
41.
Zenia
,
S.
,
Ayed
,
L. B.
,
Nouari
,
M.
, and Delamézière, A.,
2015
, “
An Elastoplastic Constitutive Damage Model to Simulate the Chip Formation Process and Workpiece Subsurface Defects When Machining CFRP Composites
,”
Procedia CIRP
,
31
, pp.
100
105
.
42.
Jaafar
,
M.
,
Atlati
,
S.
,
Makich
,
H.
,
Nouari
,
M.
,
Moufki
,
A.
, and
Julliere
,
B.
,
2017
, “
A 3D FE Modeling of Machining Process of Nomex®; Honeycomb Core: Influence of the Cell Structure Behaviour and Specific Tool Geometry
,”
Procedia CIRP
,
58
, pp.
505
510
.
43.
Wang
,
X. M.
, and
Zhang
,
L. C.
,
2003
, “
An Experimental Investigation Into the Orthogonal Cutting of Unidirectional Fibre Reinforced Plastics
,”
Int. J. Mach. Tools Manuf.
,
43
(
10
), pp.
1015
1022
.
44.
Zhou
,
H.
,
Xu
,
P.
,
Xie
,
S.
,
Feng
,
Z.
, and
Wang
,
D.
,
2018
, “
Mechanical Performance and Energy Absorption Properties of Structures Combining Two Nomex Honeycombs
,”
Compos. Struct.
,
185
, pp.
524
536
.
45.
Ramaswamy
,
B.
, and
Kawahara
,
M.
,
2010
, “
Arbitrary Lagrangian–Eulerianc Finite Element Method for Unsteady, Convective, Incompressible Viscous Free Surface Fluid Flow
,”
Int. J. Numer. Methods Fluids
,
7
(
10
), pp.
1053
1075
.
46.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
548
.
You do not currently have access to this content.