Abstract

Residual stress (RS) is a major processing issue for selective laser melting (SLM) of metal alloys. Postprocessing by way of heat treatment or hot isostatic pressing is usually required for acceptable mechanical properties. In this work, laser shock peening (LSP) treatment on both SLM and cast aluminum A357 alloys are compared with regard to the development of beneficial near-surface compressive RS. Experiments are conducted using high energy nanosecond pulsed laser, together with a fast photodetector connected to a high-resolution oscilloscope and high-speed camera to identify detailed temporal and spatial laser pulse profiles to improve numerical predictions. Constitutive modeling for SLM A357 alloy is performed using finite element simulation and data obtained from X-ray diffraction (XRD) measurements. Since XRD-RS measurements are accompanied with significant machine-reported error, an effective method is introduced to quantify the material constitutive model uncertainty in terms of a joint probability mass function. Conventionally, most constitutive behavior research for LSP involves deterministic material modeling. Predicted RS using deterministic approaches fail to reflect real-world variations in the materials, laser treatment, or RS measurements. A discretized Bayesian inference is used to quantify the rate-dependent plasticity material model parameters as a joint probability function. RS are then characterized as random fields, which provides far greater insight into the practical ability to attain desired residual stresses. Moreover, for identical LSP treatments, it is determined that the material models are significantly different for the SLM and the conventional cast A357 aluminum alloys, resulting in much lower magnitude of compressive RS in the SLM alloy.

References

1.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
2.
Bremen
,
S.
,
Meiners
,
W.
, and
Diatlov
,
A.
,
2012
, “
Selective Laser Melting
,”
Laser Tech. J.
,
9
(
2
), pp.
33
38
. 10.1002/latj.201290018
3.
Rombouts
,
M.
,
Kruth
,
J. P.
,
Froyen
,
L.
, and
Mercelis
,
P.
,
2006
, “
Fundamentals of Selective Laser Melting of Alloyed Steel Powders
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
187
192
. 10.1016/S0007-8506(07)60395-3
4.
Agapovichev
,
A.
,
Kokareva
,
V.
,
Smelov
,
V.
, and
Sotov
,
A.
,
2016
, “
Selective Laser Melting of Titanium Alloy: Investigation of Mechanical Properties and Microstructure
,”
IOP Conference Series: Materials Science and Engineering
,
Tomsk, Russian Federation
,
June 9–11
, Volume
156
, pp.
012031
,
IOP Publishing
.
5.
Rao
,
H.
,
Giet
,
S.
,
Yang
,
K.
,
Wu
,
X.
, and
Davies
,
C. H.
,
2016
, “
The Influence of Processing Parameters on Aluminium Alloy A357 Manufactured by Selective Laser Melting
,”
Mater. Des.
,
109
, pp.
334
346
. 10.1016/j.matdes.2016.07.009
6.
Aversa
,
A.
,
Lorusso
,
M.
,
Trevisan
,
F.
,
Ambrosio
,
E. P.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Biamino
,
S.
,
Fino
,
P.
,
Lombardi
,
M.
, and
Pavese
,
M.
,
2017
, “
Effect of Process and Post-Process Conditions on the Mechanical Properties of an A357 Alloy Produced via Laser Powder Bed Fusion
,”
Metals
,
7
(
2
), p.
68
. 10.3390/met7020068
7.
Selcuk
,
C.
,
2011
, “
Laser Metal Deposition for Powder Metallurgy Parts
,”
Powder Metall.
,
54
(
2
), pp.
94
99
.
8.
Manthiram
,
A.
,
Bourell
,
D. L.
, and
Marcus
,
H. L.
,
1993
, “
Nanophase Materials in Solid Freeform Fabrication
,”
JOM J. Miner., Met. Mater. Soc.
,
45
(
11
), pp.
66
70
. 10.1007/BF03222493
9.
Asgharzadeh
,
H.
, and
Simchi
,
A.
,
2005
, “
Effect of Sintering Atmosphere and Carbon Content on the Densification and Microstructure of Laser-Sintered M2 High-Speed Steel Powder
,”
Mater. Sci. Eng. A
,
403
(
1
), pp.
290
298
. 10.1016/j.msea.2005.05.017
10.
Santos
,
E. C.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Laoui
,
T.
,
2006
, “
Rapid Manufacturing of Metal Components by Laser Forming
,”
Int. J. Mach. Tools Manuf.
,
46
(
12
), pp.
1459
1468
. 10.1016/j.ijmachtools.2005.09.005
11.
Kruth
,
J. P.
,
Wang
,
X.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Lasers and Materials in Selective Laser Sintering
,”
Assembly Autom.
,
23
(
4
), pp.
357
371
. 10.1108/01445150310698652
12.
Shamsaei
,
N.
,
Yadollahi
,
A.
,
Bian
,
L.
, and
Thompson
,
S. M.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part ii: Mechanical Behavior, Process Parameter Optimization and Control
,”
Addit. Manuf.
,
8
, pp.
12
35
. 10.1016/j.addma.2015.07.002
13.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Post-Processing of Selective Laser Sintered Metal Parts
,”
Rapid Prototyping J.
,
1
(
2
), pp.
36
44
. 10.1108/13552549510086853
14.
Das
,
S.
,
Wohlert
,
M.
,
Beaman
,
J. J.
, and
Bourell
,
D. L.
,
1998
, “
Producing Metal Parts With Selective Laser Sintering/Hot Isostatic Pressing
,”
JOM J. Miner., Met. Mater. Soc.
,
50
(
12
), pp.
17
20
. 10.1007/s11837-998-0299-1
15.
Trosch
,
T.
,
Strößner
,
J.
,
Völkl
,
R.
, and
Glatzel
,
U.
,
2016
, “
Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting
,”
Mater. Lett.
,
164
, pp.
428
431
. 10.1016/j.matlet.2015.10.136
16.
Attar
,
H.
,
Bönisch
,
M.
,
Calin
,
M.
,
Zhang
,
L. C.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2014
, “
Selective Laser Melting of In Situ Titanium–Titanium Boride Composites: Processing, Microstructure and Mechanical Properties
,”
Acta Mater.
,
76
, pp.
13
22
. 10.1016/j.actamat.2014.05.022
17.
Kempen
,
K.
,
Thijs
,
L.
,
Yasa
,
E.
,
Badrossamay
,
M.
,
Verheecke
,
W.
, and
Kruth
,
J.
,
2011
, “
Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10 mg
,”
Solid Freeform Fabrication Symposium
,
The University of Texas in Austin, Austin, TX
,
Aug. 8–10
, Volume
22
, pp.
484
495
.
18.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1
, pp.
77
86
. 10.1016/j.addma.2014.08.001
19.
Spierings
,
A.
,
Starr
,
T.
, and
Wegener
,
K.
,
2013
, “
Fatigue Performance of Additive Manufactured Metallic Parts
,”
Rapid Prototyping J.
,
19
(
2
), pp.
88
94
. 10.1108/13552541311302932
20.
Song
,
B.
,
Zhao
,
X.
,
Li
,
S.
,
Han
,
C.
,
Wei
,
Q.
,
Wen
,
S.
,
Liu
,
J.
, and
Shi
,
Y.
,
2015
, “
Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts: A Review
,”
Front. Mech. Eng.
,
10
(
2
), pp.
111
125
. 10.1007/s11465-015-0341-2
21.
Kruth
,
J. P.
,
Deckers
,
J.
,
Yasa
,
E.
, and
Wauthle
,
R.
,
2012
, “
Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method
,”
Proc. Inst. Mech. Eng. B
,
226
(
6
), pp.
980
991
. 10.1177/0954405412437085
22.
Casavola
,
C.
,
Campanelli
,
S. L.
, and
Pappalettere
,
C.
,
2008
, “
Experimental Analysis of Residual Stresses in the Selective Laser Melting Process
,”
Proceedings of the XIth International Congress and Exposition
,
Orlando, FL
,
June 2–5
.
23.
Arola
,
D.
,
Alade
,
A.
, and
Weber
,
W.
,
2006
, “
Improving Fatigue Strength of Metals Using Abrasive Waterjet Peening
,”
Mach. Sci. Technol.
,
10
(
2
), pp.
197
218
. 10.1080/10910340600710105
24.
Singh
,
G.
,
2009
, “
Effective Simulation and Optimization of a Laser Peening Process
,”
Ph.D. thesis
,
Wright State University
.
25.
Fairand
,
B.
,
Wilcox
,
B.
,
Gallagher
,
W.
, and
Williams
,
D.
,
1972
, “
Laser Shock-Induced Microstructural and Mechanical Property Changes in 7075 Aluminum
,”
J. Appl. Phys.
,
43
(
9
), pp.
3893
3895
. 10.1063/1.1661837
26.
Clauer
,
A. H.
,
Walters
,
C. T.
, and
Ford
,
S. C.
,
1983
, “
The Effects of Laser Shock Processing on the Fatigue Properties of 2024-T3 Aluminum
,”
Lasers in Materials Processing, Los Angeles, CA
,
Metals Park, OH
,
Jan.
, pp.
7
22
.
27.
Hatamleh
,
M. I.
,
Mahadevan
,
J.
,
Malik
,
A.
, and
Qian
,
D.
,
2018
, “
Variable Damping Profiles Using Modal Analysis for Laser Shock Peening Simulation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051006
. 10.1115/1.4039196
28.
Mahadevan
,
J. S.
,
2017
, “
Probabilistic Material Modeling of Selective Laser Melted A357 Aluminum Alloy Subjected to Laser Shock Peening
,”
Master’s thesis
,
University of Texas at Dallas
.
29.
Braisted
,
W.
, and
Brockman
,
R.
,
1999
, “
Finite Element Simulation of Laser Shock Peening
,”
Int. J. Fatigue
,
21
(
7
), pp.
719
724
. 10.1016/S0142-1123(99)00035-3
30.
Spradlin
,
T. J.
,
2011
, “
Process Sequencing for Fatigue Life Extension of Large Scale Laser Peened Components
,”
Ph.D. thesis
,
Wright State University
,
Dayton, OH
.
31.
Bhamare
,
S.
,
Ramakrishnan
,
G.
,
Mannava
,
S. R.
,
Langer
,
K.
,
Vasudevan
,
V. K.
, and
Qian
,
D.
,
2013
, “
Simulation-Based Optimization of Laser Shock Peening Process for Improved Bending Fatigue Life of Ti–6Al–2Sn–4Zr–2Mo Alloy
,”
Surf. Coat. Technol.
,
232
, pp.
464
474
. 10.1016/j.surfcoat.2013.06.003
32.
Brockman
,
R. A.
,
Braisted
,
W. R.
,
Olson
,
S. E.
,
Tenaglia
,
R. D.
,
Clauer
,
A. H.
,
Langer
,
K.
, and
Shepard
,
M. J.
,
2012
, “
Prediction and Characterization of Residual Stresses From Laser Shock Peening
,”
Int. J. Fatigue
,
36
(
1
), pp.
96
108
. 10.1016/j.ijfatigue.2011.08.011
33.
Hasser
,
P. J.
,
Malik
,
A. S.
,
Langer
,
K.
,
Spradlin
,
T. J.
, and
Hatamleh
,
M. I.
,
2016
, “
An Efficient Reliability-Based Simulation Method for Optimum Laser Peening Treatment
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111001
. 10.1115/1.4033604
34.
Langer
,
K.
,
Olson
,
S.
,
Brockman
,
R.
,
Braisted
,
W.
,
Spradlin
,
T.
, and
Fitzpatrick
,
M. E.
,
2015
, “
High Strain-Rate Material Model Validation for Laser Peening Simulation
,”
J. Eng.-JOE
,
13
, pp.
150
157
.
35.
Kalentics
,
N.
,
Boillat
,
E.
,
Peyre
,
P.
,
Ćirić-Kostić
,
S.
,
Bogojević
,
N.
, and
Logé
,
R. E.
,
2017
, “
Tailoring Residual Stress Profile of Selective Laser Melted Parts by Laser Shock Peening
,”
Addit. Manuf.
,
16
, pp.
90
97
. 10.1016/j.addma.2017.05.008
36.
Kalentics
,
N.
,
Boillat
,
E.
,
Peyre
,
P.
,
Gorny
,
C.
,
Kenel
,
C.
,
Leinenbach
,
C.
,
Jhabvala
,
J.
, and
Logé
,
R. E.
,
2017
, “
3D Laser Shock Peening—A New Method for the 3D Control of Residual Stresses in Selective Laser Melting
,”
Mater. Des.
,
130
, pp.
350
356
. 10.1016/j.matdes.2017.05.083
37.
Sealy
,
M.
,
Madireddy
,
G.
,
Li
,
C.
, and
Guo
,
Y.
,
2016
, “
Finite Element Modeling of Hybridadditive Manufacturing by Laser Shock Peening
,”
Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication System
,
Austin, TX
,
Aug. 8–10
, pp.
8
10
.
38.
Alexopoulos
,
N.
, and
Pantelakis
,
S. G.
,
2004
, “
Quality Evaluation of A357 Cast Aluminum Alloy Specimens Subjected to Different Artificial Aging Treatment
,”
Mater. Des.
,
25
(
5
), pp.
419
430
. 10.1016/j.matdes.2003.11.007
39.
Zhang
,
D. L.
,
Zheng
,
L. H.
, and
StJohn
,
D. H.
,
2002
, “
Effect of a Short Solution Treatment Time on Microstructure and Mechanical Properties of Modified Al–7wt.% Si–0.3 wt.% Mg Alloy
,”
J. Light Met.
,
2
(
1
), pp.
27
36
. 10.1016/S1471-5317(02)00010-X
40.
Yang
,
X.
,
Lai
,
Z.
,
Zhu
,
J.
,
Liu
,
Y.
, and
He
,
D.
,
2012
, “
Hot Compressive Deformation Behavior of the As-Quenched A357 Aluminum Alloy
,”
Mater. Sci. Eng.: B
,
177
(
19
), pp.
1721
1725
. 10.1016/j.mseb.2012.02.020
41.
Yang
,
X.
,
Zhu
,
J.
,
Nong
,
Z.
,
Lai
,
Z.
, and
He
,
D.
,
2013
, “
FEM Simulation of Quenching Process in A357 Aluminum Alloy Cylindrical Bars and Reduction of Quench Residual Stress Through Cold Stretching Process
,”
Comput. Mater. Sci.
,
69
, pp.
396
413
. 10.1016/j.commatsci.2012.11.024
42.
Kumar
,
G.
,
Hegde
,
S.
, and
Prabhu
,
K. N.
,
2007
, “
Heat Transfer and Solidification Behavior of Modified A357 Alloy
,”
J. Mater. Process. Technol.
,
182
(
1
), pp.
152
156
. 10.1016/j.jmatprotec.2006.07.024
43.
Trevisan
,
F.
,
Calignano
,
F.
,
Lorusso
,
M.
,
Ambrosio
,
E. P.
,
Lombardi
,
M.
,
Pavese
,
M.
, and
Manfredi
,
D.
,
2016
, “
Effects of Heat Treatments on A357 Alloy Produced by Selective Laser Melting
,”
Proceedings of the World PM 2016
,
Hamburg, Germany
,
Oct. 9–13
, pp.
1
6
.
44.
Luong
,
H.
, and
Hill
,
M. R.
,
2008
, “
The Effects of Laser Peening on High-Cycle Fatigue in 7085-T7651 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
477
(
1
), pp.
208
216
. 10.1016/j.msea.2007.05.024
45.
Sathyajith
,
S.
,
Kalainathan
,
S.
, and
Swaroop
,
S.
,
2013
, “
Laser Peening Without Coating on Aluminum Alloy Al-6061-T6 Using low Energy Nd: YAG Laser
,”
Opt. Laser Technol.
,
45
, pp.
389
394
. 10.1016/j.optlastec.2012.06.019
46.
Wang
,
J.
,
Zhang
,
Y.
,
Chen
,
J.
,
Zhou
,
J.
,
Ge
,
M.
,
Lu
,
Y.
, and
Li
,
X.
,
2015
, “
Effects of Laser Shock Peening on Stress Corrosion Behavior of 7075 Aluminum Alloy Laser Welded Joints
,”
Mater. Sci. Eng. A
,
647
, pp.
7
14
. 10.1016/j.msea.2015.08.084
47.
Ding
,
K.
, and
Ye
,
L.
,
2006
,
Laser Shock Peening: Performance and Process Simulation
,
Woodhead Publishing
,
Cambridge, UK
.
48.
Sundar
,
R.
,
Kumar
,
H.
,
Kaul
,
R.
,
Ranganathan
,
K.
,
Tiwari
,
P.
,
Kukreja
,
L. M.
, and
Oak
,
S. M.
,
2012
, “
Studies on Laser Peening Using Different Sacrificial Coatings
,”
Surf. Eng.
,
28
(
8
), pp.
564
568
. 10.1179/1743294412Y.0000000029
49.
Zhou
,
Z.
,
Bhamare
,
S.
,
Ramakrishnan
,
G.
,
Mannava
,
S. R.
,
Langer
,
K.
,
Wen
,
Y.
,
Qian
,
D.
, and
Vasudevan
,
V. K.
,
2012
, “
Thermal Relaxation of Residual Stress in Laser Shock Peened Ti-6Al-4V Alloy
,”
Surf. Coat. Technol.
,
206
(
22
), pp.
4619
4627
. 10.1016/j.surfcoat.2012.05.022
50.
Zhou
,
Z.
,
Gill
,
A. S.
,
Qian
,
D.
,
Mannava
,
S.
,
Langer
,
K.
,
Wen
,
Y.
, and
Vasudevan
,
V. K.
,
2011
, “
A Finite Element Study of Thermal Relaxation of Residual Stress in Laser Shock Peened IN718 Superalloy
,”
Int. J. Impact Eng.
,
38
(
7
), pp.
590
596
. 10.1016/j.ijimpeng.2011.02.006
51.
Hibbitt
,
K.
, and
Sorensen
,
2001
,
ABAQUS/Explicit: User's Manual
.
52.
Kim
,
J. H.
,
Kim
,
Y. J.
, and
Kim
,
J. S.
,
2013
, “
Effects of Simulation Parameters on Residual Stresses for Laser Shock Peening Finite Element Analysis
,”
J. Mech. Sci. Technol.
,
27
(
7
), pp.
2025
2034
. 10.1007/s12206-012-1263-0
53.
Peyre
,
P.
,
Chaieb
,
I.
, and
Braham
,
C.
,
2007
, “
FEM Calculation of Residual Stresses Induced by Laser Shock Processing in Stainless Steels
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
3
), pp.
205
. 10.1088/0965-0393/15/3/002
54.
Peyre
,
P.
,
Sollier
,
A.
,
Chaieb
,
I.
,
Berthe
,
L.
,
Bartnicki
,
E.
,
Braham
,
C.
, and
Fabbro
,
R.
,
2003
, “
FEM Simulation of Residual Stresses Induced by Laser Peening
,”
Eur. Phys. J. Appl. Phys.
,
23
(
2
), pp.
83
88
. 10.1051/epjap:2003037
55.
Hfaiedh
,
N.
,
Peyre
,
P.
,
Song
,
H.
,
Popa
,
I.
,
Ji
,
V.
, and
Vignal
,
V.
,
2015
, “
Finite Element Analysis of Laser Shock Peening of 2050-T8 Aluminum Alloy
,”
Int. J. Fatigue
,
70
, pp.
480
489
. 10.1016/j.ijfatigue.2014.05.015
56.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
. 10.1063/1.346783
57.
Gupta
,
S.
,
Abotula
,
S.
, and
Shukla
,
A.
,
2014
, “
Determination of Johnson-Cook Parameters for Cast Aluminum Alloys
,”
ASME J. Eng. Mater. Technol.
,
136
(
3
), p.
034502
. 10.1115/1.4027793
58.
ASM International
,
1990
,
ASM International, ASM International. Handbook Committee, and ASM International. Alloy Phase Diagram Committee. Metals Handbook: Properties and Selection
, Vol.
2
. ASM International.
59.
Hatamleh
,
M. I.
,
Sadeh
,
S.
,
Farooq
,
T.
,
Malik
,
A.
, and
Qian
,
D.
,
2018
, “
Finite Element Study of Laser Peening on Selective Laser Melted A357 Aluminum Alloy During Tension Test
,”
MSEC-2018 Conference
,
College Station, TX
,
June 18–22
, p.
V004T03A046
.
60.
Clauer
,
A. H.
,
Holbrook
,
J. H.
, and
Fairand
,
B. P.
,
1981
, “
Effects of Laser Induced Shock Waves on Metals
,”
Shock Waves and High-Strain-Rate Phenomena in Metals
, pp.
675
702
,
Springer
,
Boston, MA
.
61.
Clauer
,
A. H.
,
1996
, “
Laser Shock Peening for Fatigue Resistance
,”
Proceedings of a Conference on Surface Performance of Titanium, at Cincinnati, OH, Volume Surface Performance of Titanium
, pp.
217
230
,
TMS, Warrendale, PA.
62.
Amarchinta
,
H. K.
,
Grandhi
,
R. V.
,
Clauer
,
A. H.
,
Langer
,
K.
, and
Stargel
,
D. S.
,
2010
, “
Simulation of Residual Stress Induced by a Laser Peening Process Through Inverse Optimization of Material Models
,”
J. Mater. Process. Technol.
,
210
(
14
), pp.
1997
2006
. 10.1016/j.jmatprotec.2010.07.015
63.
Nelson
,
A. W.
,
Malik
,
A. S.
,
Wendel
,
J. C.
, and
Zipf
,
M. E.
,
2014
, “
Probabilistic Force Prediction in Cold Sheet Rolling by Bayesian Inference
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041006
. 10.1115/1.4027434
64.
Park
,
I.
,
Amarchinta
,
H. K.
, and
Grandhi
,
R. V.
,
2010
, “
A Bayesian Approach for Quantification of Model Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
95
(
7
), pp.
777
785
. 10.1016/j.ress.2010.02.015
65.
Forrester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
New York
.
66.
Forrester
,
A. I.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1
), pp.
50
79
. 10.1016/j.paerosci.2008.11.001
67.
Turlach
,
B. A.
,
1993
,
Bandwidth Selection in Kernel Density Estimation: A Review
,
CORE and Institut de Statistique
,
Louvain-la-Neuve, Belgium
.
You do not currently have access to this content.