During the micromachining processes of particle-reinforced metal matrix composites (PMMCs), matrix-particle interface failure plays an important role in the cutting mechanism. This paper presents a novel analytical model to predict the cutting forces in micromilling of this material considering particle debonding caused by interface failure. The particle debonding is observed not only in the processed surface but also in the chip. A new algorithm is proposed to estimate the particles debonding force caused by interface failure with the aid of Nardin–Schultz model. Then, several aspects of the cutting force generation mechanism are considered in this paper, including particles debonding force in the shear zone and build-up region, particles cracking force in the build-up region, shearing and ploughing forces of metal matrix, and varying sliding friction coefficients due to the reinforced particles in the chip-tool interface. The micro-slot milling experiments are carried out on a self-made three-axis high-precision machine tool, and the comparison between the predicted cutting forces and measured values shows that the proposed model can provide accurate prediction. Finally, the effects of interface failure, reinforced particles, and tool edge radius on cutting forces are investigated by the proposed model and some conclusions are given as follows: the particles debonding force caused by interface failure is significant and takes averagely about 23% of the cutting forces under the given cutting conditions; reinforced particles and edge radius can greatly affect the micromilling process of PMMCs.

References

1.
Kaczmar
,
J. W.
,
Pietrzak
,
K.
, and
Włosiński
,
W.
,
2000
, “
The Production and Application of Metal Matrix Composite Materials
,”
J. Mater. Process. Technol.
,
106
(
1–3
), pp.
58
67
.
2.
Kyritsis
,
D. C.
,
Roychoudhury
,
S.
,
McEnally
,
C. S.
,
Pfefferle
,
L. D.
, and
Gomez
,
A.
,
2004
, “
Mesoscale Combustion: A First Step Towards Liquid Fueled Batteries
,”
Exp. Therm. Fluid Sci
,
28
(
7
), pp.
763
770
.
3.
Deng
,
W.
,
2008
, “
Fundamentals and Applications of Multiplexed Electrosprays
,” Ph.D. dissertation, Yale University, New Haven, CT.
4.
Pramanik
,
A.
,
2014
, “
Developments in the Non-Traditional Machining of Particle Reinforced Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
86
(
11
), pp.
44
61
.
5.
Liu
,
J.
,
Li
,
J.
, and
Xu
,
C. Y.
,
2014
, “
Interaction of the Cutting Tools and the Ceramic-Reinforced Metal Matrix Composites During Micro-Machining: A Review
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
2
), pp.
55
70
.
6.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.
7.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-End Milling—Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
.
8.
Fang
,
N.
,
2003
, “
Slip-Line Modelling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
.
9.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
10.
Davim
,
J. P.
,
2002
, “
Diamond Tool Performance in Machining Metal-Matrix Composites
,”
J. Mater. Process. Technol.
,
128
(
1–3
), pp.
100
105
.
11.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2012
, “
Modeling of Machining of Composite Materials: A Review
,”
Int. J. Mach. Tools Manuf.
,
57
(
2
), pp.
102
121
.
12.
Kishawy
,
H. A.
,
Kannan
,
S.
, and
Balazinski
,
M.
,
2004
, “
An Energy Based Analytical Force Model for Orthogonal Cutting of Metal Matrix Composites
,”
CIRP Ann.—Manuf. Technol.
,
53
(
1
), pp.
91
94
.
13.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
,
2006
, “
Prediction of Cutting Forces in Machining of Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1795
1803
.
14.
Dabade
,
U. A.
,
Dapkekar
,
D.
, and
Joshi
,
S. S.
,
2009
, “
Modeling of Chip-Tool Interface Friction to Predict Cutting Forces in Machining of Al/SiCp Composites
,”
Int. J. Mach. Tools Manuf.
,
49
(
9
), pp.
690
700
.
15.
Sikder
,
S.
, and
Kishawy
,
H. A.
,
2012
, “
Analytical Model for Force Prediction When Machining Metal Matrix Composite
,”
Int. J. Mech. Sci.
,
59
(
1
), pp.
95
103
.
16.
Ghandehariun
,
A.
,
Hussein
,
H. M.
, and
Kishawy
,
H. A.
,
2016
, “
Machining Metal Matrix Composites: Novel Analytical Force Model
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1-4
), pp.
233
241
.
17.
Ghandehariun
,
A.
,
Kishawy
,
H. A.
, and
Balazinski
,
M.
,
2016
, “
On Machining Modeling of Metal Matrix Composites: A Novel Comprehensive Constitutive Equation
,”
Int. J. Mech. Sci.
,
107
, pp.
235
241
.
18.
Nasr
,
M. N. A.
,
Ghandehariun
,
A.
, and
Kishawy
,
H. A.
,
2017
, “
A Physics-Based Model for Metal Matrix Composites Deformation During Machining: A Modified Constitutive Equation
,”
ASME J. Eng. Mater. Technol.
,
139
(
1
), p.
011003
.
19.
Jiang
,
L. Y.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2014
, “
Estimating the Cohesive Zone Model Parameters of Carbon Nanotube-Polymer Interface for Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031004
.
20.
Jarząbek
,
D. M.
,
Chmielewski
,
M.
, and
Wojciechowski
,
T.
,
2015
, “
The Measurement of the Adhesion Force Between Ceramic Particles and Metal Matrix in Ceramic Reinforced-Metal Matrix Composites
,”
Compos. Part A: Appl. Sic. Manuf.
,
76
, pp.
124
130
.
21.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
,
2007
, “
An FEM Investigation Into the Behavior of Metal Matrix Composites: Tool-Particle Interaction During Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
,
47
(
10
), pp.
1497
1506
.
22.
Liu
,
J.
,
Li
,
J.
, and
Xu
,
C. Y.
,
2013
, “
Cutting Force Prediction on Micromilling Magnesium Metal Matrix Composites With Nanoreinforcements
,”
ASME J. Micro Nano-Manuf.
,
1
(
1
), p.
011010
.
23.
Nardin
,
M.
, and
Schultz
,
J.
,
1996
, “
Relationship Between Work of Adhesion and Equilibrium Interatomic Distance at the Interface
,”
Langmuir
,
12
(
17
), pp.
4238
4242
.
24.
Zhou
,
L.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Yao
,
P. F.
,
Yang
,
C. C.
, and
Li
,
B.
,
2015
, “
Analytical Modeling and Experimental Validation of Micro End-Milling Cutting Forces Considering Edge Radius and Material Strengthening Effects
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
29
41
.
25.
Quan
,
Y. M.
,
Zhou
,
Z. H.
, and
Ye
,
B. Y.
,
1999
, “
Cutting Process and Chip Appearance of Aluminum Matrix Composites Reinforced by SiC Particle
,”
J. Mater. Process. Technol.
,
91
(
1–3
), pp.
231
235
.
26.
Lin
,
J. T.
,
Bhattacharyya
,
D.
, and
Ferguson
,
W. G.
,
1998
, “
Chip Formation in the Machining of SiC-Particle-Reinforced Aluminium-Matrix Composites
,”
Compos. Sci. Technol.
,
58
(
2
), pp.
285
291
.
27.
Davis
,
B.
,
Dabrow
,
D.
,
Ju
,
L. C.
,
Li
,
A. H.
,
Xu
,
C. Y.
, and
Huang
,
Y.
,
2017
, “
Study of Chip Morphology and Chip Formation Mechanism During Machining of Magnesium-Based Metal Matrix Composites
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091008
.
28.
Sun
,
L. Z.
,
Liu
,
H. T.
, and
Ju
,
J. W. W.
,
2015
, “
Particle-Cracking Modeling of Metal Matrix Composites
,”
Handbook of Damage Mechanics
,
Springer
,
New York
, pp.
1147
1162
.
29.
Jiang
,
Y. P.
,
2016
, “
An Analytical Model for Particulate Reinforced Composites (PRCs) Taking Account of Particle Debonding and Matrix Cracking
,”
Mater. Res. Express
,
3
(
10
), p.
106501
.
30.
Lee
,
H. K.
,
2001
, “
A Computational Approach to the Investigation of Impact Damage Evolution in Discontinuously Reinforced Fiber Composites
,”
Comp. Mech.
,
27
(
6
), pp.
504
512
.
31.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics
, Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
32.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
2000
, “
A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
384
390
.
33.
Basuray
,
P. K.
,
Misra
,
B. K.
, and
Lal
,
G. K.
,
1977
, “
Transition From Ploughing to Cutting During Machining With Blunt Tools
,”
Wear
,
43
(
3
), pp.
341
349
.
34.
Manjunathaiah
,
J.
,
1998
, “
Analysis and a New Model for the Orthogonal Machining Process in the Presence of Edge-Radiused (Non-Sharped) Tools
,”
Ph.D. dissertation
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/131272
35.
Ozlu
,
E.
,
Budak
,
E.
, and
Molinari
,
A.
,
2009
, “
Analytical and Experimental Investigation of Rake Contact and Friction Behavior in Metal Cutting
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
865
875
.
36.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
,
2008
, “
Machining of Metal Matrix Composites: Effect of Ceramic Particles on Residual Stress, Surface Roughness and Chip Formation
,”
Int. J. Mach. Tools Manuf.
,
48
(
15
), pp.
1613
1625
.
37.
Liu
,
H. T.
,
2010
, “
Research on Residual Stresses and Deformation of Thin-Walled Precision Rotary Parts Induced by Machining
,” Ph.D. dissertation, Harbin Institute of Technology, Harbin, China.
38.
Bian
,
R.
,
He
,
N.
,
Li
,
L.
,
Zhan
,
Z. B.
,
Wu
,
Q.
, and
Shi
,
Z. Y.
,
2014
, “
Precision Milling of High Volume Fraction SiCp/Al Composites With Monocrystalline Diamond End Mill
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
411
419
.
39.
Fang
,
N.
,
2005
, “
A New Quantitative Sensitivity Analysis of the Flow Stress of 18 Engineering Materials in Machining
,”
ASME J. Eng. Mater. Technol.
,
127
(
2
), pp.
192
196
.
40.
Zhang
,
W.
,
Wei
,
G.
, and
Xiao
,
X. K.
,
2013
, “
Constitutive Relation and Fracture Criterion of 2A12 Aluminum Alloy
,”
Acta Armamentarii
,
34
(
3
), pp.
276
282
.
41.
Monaghan
,
J.
, and
Brazil
,
D.
,
1998
, “
Modelling the Flow Processes of a Particle Reinforced Metal Matrix Composite During Machining
,”
Compos. Part A: Appl. Sci. Manuf.
,
29
(
1–2
), pp.
87
99
.
42.
Venkatachalam
,
S.
,
Fergani
,
O.
,
Li
,
X. P.
,
Yang
,
J. G.
,
Chiang
,
K. N.
, and
Liang
,
S. Y.
,
2015
, “
Microstructure Effects on Cutting Forces and Flow Stress in Ultra-Precision Machining of Polycrystalline Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021020
.
You do not currently have access to this content.