Gear shaping is, currently, the most prominent method for machining internal gears, which are a major component in planetary gearboxes. However, there are few reported studies on the mechanics of the process. This paper presents a comprehensive model of gear shaping that includes the kinematics, cutter–workpiece engagement (CWE), and cutting forces. To predict the cutting forces, the CWE is calculated at discrete time steps using a tridexel discrete solid modeler. From the CWE in tridexel form, the two-dimensional (2D) chip geometry is reconstructed using Delaunay triangulation (DT) and alpha shape reconstruction. This in turn is used to determine the undeformed chip geometry along the cutting edge. The cutting edge is discretized into nodes with varying cutting force directions (tangential, feed, and radial), inclination angles, and rake angles. If engaged in the cut during a particular time-step, each node contributes an incremental force vector calculated with the oblique cutting force model. Using a three-axis dynamometer on a Liebherr LSE500 gear shaping machine tool, the cutting force prediction algorithm was experimentally verified on a variety of processes and gears, which included an internal spur gear, external spur gear, and external helical gear. The simulated and measured force profiles correlate closely with about 3–10% RMS error.

References

1.
Klocke
,
F.
, and
Kobialka
,
C.
,
2000
, “
Reducing Production Costs in Cylindrical Gear Hobbing and Shaping
,”
Gear Technol.
, Mar./Apr., pp.
26
31
.
2.
Klocke
,
F.
, and
Köllner
,
T.
,
1999
, “
Hard Gear Finishing With a Geometrically Defined Cutting Edge
,”
Gear Technol.
, Nov./Dec., pp.
24
29
.
3.
Armarego
,
E.
, and
Uthaichaya
,
M.
,
1977
, “
A Mechanics of Cutting Approach for Force Prediction in Turning Operations
,”
J. Eng. Prod.
,
1
(
1
), pp.
1
18
.
4.
Reddy
,
R. G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2000
, “
A Mechanistic Force Model for Contour Turning
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
398
405
.
5.
Meyer
,
R.
,
Köhler
,
J.
, and
Denkena
,
B.
,
2012
, “
Influence of the Tool Corner Radius on the Tool Wear and Process Forces During Hard Turning
,”
Int. J. Adv. Manuf. Technol.
,
58
(
9–12
), pp.
933
940
.
6.
Altintas
,
Y.
, and
Lee
,
P.
,
1996
, “
A General Mechanics and Dynamics Model for Helical End Mills
,”
CIRP Ann.—Manuf. Technol.
,
45
(
1
), pp.
59
64
.
7.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
8.
Omar
,
O.
,
El-Wardany
,
T.
, and
Elbestawi
,
M.
,
2007
, “
An Improved Cutting Force and Surface Topography Prediction Model in End Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1263
1275
.
9.
Khoshdarregi
,
M. R.
, and
Altintas
,
Y.
,
2015
, “
Generalized Modeling of Chip Geometry and Cutting Forces in Multi-Point Thread Turning
,”
Int. J. Mach. Tools Manuf.
,
98
, pp.
21
32
.
10.
Chandrasekharan
,
V.
,
Kapoor
,
S.
, and
DeVor
,
R.
,
1998
, “
A Mechanistic Model to Predict the Cutting Force System for Arbitrary Drill Point Geometry
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
563
570
.
11.
de Lacalle
,
L. L.
,
Rivero
,
A.
, and
Lamikiz
,
A.
,
2009
, “
Mechanistic Model for Drills With Double Point-Angle Edges
,”
Int. J. Adv. Manuf. Technol.
,
40
(
5–6
), pp.
447
457
.
12.
Sutherland
,
J.
,
Salisbury
,
E.
, and
Hoge
,
F.
,
1997
, “
A Model for the Cutting Force System in the Gear Broaching Process
,”
Int. J. Mach. Tools Manuf.
,
37
(
10
), pp.
1409
1421
.
13.
Ozturk
,
O.
, and
Budak
,
E.
,
2003
, “
Modeling of Broaching Process for Improved Tool Design
,”
ASME
Paper No. IMECE2003-42304.
14.
Imani
,
B.
,
Sadeghi
,
M.
, and
Elbestawi
,
M.
,
1998
, “
An Improved Process Simulation System for Ball-End Milling of Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
,
38
(
9
), pp.
1089
1107
.
15.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Cutting and Optimization of Three-Axis Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1063
1071
.
16.
Spence
,
A. D.
,
Abrari
,
F.
, and
Elbestawi
,
M.
,
2000
, “
Integrated Solid Modeller Based Solutions for Machining
,”
Comput.-Aided Des.
,
32
(
8–9
), pp.
553
568
.
17.
Budak
,
E.
,
Ozturk
,
E.
, and
Tunc
,
L.
,
2009
, “
Modeling and Simulation of 5-Axis Milling Processes
,”
CIRP Ann.—Manuf. Technol.
,
58
(
1
), pp.
347
350
.
18.
Hosseini
,
A.
, and
Kishawy
,
H.
,
2013
, “
Parametric Simulation of Tool and Workpiece Interaction in Broaching Operation
,”
Int. J. Manuf. Res.
,
8
(
4
), pp.
422
442
.
19.
Klocke
,
F.
,
Gorgels
,
C.
,
Schalaster
,
R.
, and
Stuckenberg
,
A.
,
2012
, “
An Innovative Way of Designing Gear Hobbing Processes
,”
Gear Technol.
, May, pp.
48
53
.
20.
Tapoglou
,
N.
, and
Antoniadis
,
A.
,
2012
, “
CAD-Based Calculation of Cutting Force Components in Gear Hobbing
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p. 031009.
21.
Fetvaci
,
C.
,
2010
, “
Generation Simulation of Involute Spur Gears Machined by Pinion-Type Shaper Cutters
,”
Strojniski Vestnik—J. Mech. Eng.
,
56
(
10
), pp.
644
652
.
22.
Tsay
,
C.-B.
,
Liu
,
W.-Y.
, and
Chen
,
Y.-C.
,
2000
, “
Spur Gear Generation by Shaper Cutters
,”
J. Mater. Process. Technol.
,
104
(
3
), pp.
271
279
.
23.
Shunmugam
,
M. S.
,
1982
, “
Profile Deviations in Internal Gear Shaping
,”
Int. J. Mach. Tool Des. Res.
,
22
(
1
), pp.
31
39
.
24.
Chang
,
S.-L.
, and
Tsay
,
C.-B.
,
1998
, “
Computerized Tooth Profile Generation and Undercut Analysis of Noncircular Gears Manufactured With Shaper Cutters
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
92
99
.
25.
König
,
W.
, and
Bouzakis
,
K.
,
1977
, “
Chip Formation in Gear-Shaping
,”
Ann. CIRP
,
26
(
1
), pp.
17
20
.
26.
Erkorkmaz
,
K.
,
Katz
,
A.
,
Hosseinkhani
,
Y.
,
Plakhotnik
,
D.
,
Stautner
,
M.
, and
Ismail
,
F.
,
2016
, “
Chip Geometry and Cutting Forces in Gear Shaping
,”
CIRP Ann.—Manuf. Technol.
,
65
(
1
), pp.
133
136
.
27.
Katz
,
A.
,
Erkorkmaz
,
K.
, and
Ismail
,
F.
,
2018
, “
Virtual Model of Gear Shaping Part II: Elastic Deformations and Virtual Gear Metrology
,”
ASME J. Manuf. Sci. Eng.
, in press.
28.
Katz
,
A.
,
2017
, “
Cutting Mechanics of the Gear Shaping Process
,”
Ph.D. thesis
, UWSpace, Waterloo, ON, Canada.
29.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design—Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
30.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
31.
Stabler
,
G. V.
,
1964
, “
The Chip Flow Law and Its Consequences
,”
Fifth Machine Tool Design and Research Conference
, Birmingham, UK, Sept., pp. 243–251.
32.
Benouamer
,
M. O.
, and
Michelucci
,
D.
,
1997
, “
Bridging the Gap Between CSG and Brep Via a Triple Ray Representation
,”
SMA'97 Fourth ACM Symposium on Solid Modeling and Applications
, Atlanta, GA, May 14–16, pp. 68–79.
33.
Edelsbrunner
,
H.
,
Kirkpatrick
,
D.
, and
Seidel
,
R.
,
1983
, “
On the Shape of a Set of Points in the Plane
,”
IEEE Trans. Inf. Theory
,
29
(
4
), pp.
551
559
.
34.
Berg
,
M. D.
,
Cheong
,
O.
,
Kreveld
,
M. V.
, and
Overmars
,
M.
,
2008
,
Computational Geometry: Algorithms and Applications
, 3rd ed.,
Springer-Verlag TELOS
,
Santa Clara, CA
.
35.
Watson
,
D.
,
1980
, “
Computing the n-Dimensional Delaunay Tessellation With Application to Voronoi Polytopes
,”
Comput. J.
,
24
(
2
), pp.
167
172
.
You do not currently have access to this content.