Grain depth-of-cut, which is the predominant factor determining the surface morphology, grinding force, and subsurface damage, has a significant impact on the surface quality of the finished part made of hard and brittle materials. When the existing analytical models are used to predict the gain depth-of-cut in ultra-precision grinding process of silicon wafer, the results obtained become unreasonable due to an extremely shallow grain depth-of-cut, which is inconsistent with the theory of the contact mechanics. In this study, an improved model for analyzing the grain depth-of-cut in ultra-fine rotational grinding is proposed, in which the minimum grain depth-of-cut for chip formation, the equivalent grain cutting tip radius, elastic recovery deformation in cutting process, and the actual number of effective grains are considered in the prediction of the ultrafine rotational grinding of brittle materials. The improved model is validated experimentally and shows higher accuracy than the existing model. Furthermore, the sensitivity of the grain depth-of-cut to three introduced factors is analyzed, presenting the necessity of the consideration of these factors during the prediction of grain depth-of-cut in ultrafine grinding.

References

1.
Namba
,
Y.
,
Abe
,
M.
, and
Kobayashi
,
A.
,
1993
, “
Ultraprecision Grinding of Optical Glasses to Produce Super-Smooth Surfaces
,”
CIRP Ann. Manuf. Technol.
,
42
(
1
), pp.
417
420
.
2.
Hahn
,
P. O.
,
2001
, “
The 300 mm Silicon Wafer—A Cost and Technology Challenge
,”
Microelectron. Eng.
,
56
(
1–2
), pp.
3
13
.
3.
Gnatenko
,
Y. P.
,
Bukivskij
,
P. M.
,
Piryatinski
,
Y. P.
,
Faryna
,
O.
,
Fur'yer
,
S.
, Shigiltchoff, A.,
Gamernyk
,
V.
,
Kukhtarev
,
N.
, and
Kukhtareva
,
T.
,
2010
, “
Fast Near-Infrared CdHgTe:V:Mn Photorefractive Material for Optical and Biomedical Applications
,”
International Conference on Advanced Optoelectronics and Lasers. Optoelectron,
pp.
124
126
.
4.
Cao
,
J.
,
Wu
,
Y.
,
Li
,
J.
, and
Zhang
,
Q.
,
2015
, “
A Grinding Force Model for Ultrasonic Assisted Internal Grinding (UAIG) of SiC Ceramics
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
875
885
.
5.
Tönshoff
,
H. K.
,
Schmieden
,
W.
, and
Inasaki
,
I.
,
1990
, “
Abrasive Machining of Silicon
,”
CIRP Ann. Manuf. Technol.
,
39
(
2
), pp.
621
635
.
6.
Pei
,
Z. J.
, and
Strasbaugh
,
A.
,
2001
, “
Fine Grinding of Silicon Wafers
,”
Int. J. Mach. Tools Manuf.
,
41
(
5
), pp.
659
672
.
7.
Brinksmeier
,
E.
,
Mutlugünes
,
Y.
,
Klocke
,
F.
,
Aurich
,
C.
,
Shore
,
P.
, and
Ohmori
,
H.
,
2010
, “
Ultra-Precision Grinding
,”
CIRP Ann. Manuf. Technol.
,
59
(
2
), pp.
652
671
.
8.
Tricard
,
M.
,
Kassir
,
S.
,
Herron
,
P.
, and
Pei
,
Z. J.
,
1998
, “
New Abrasive Trends in Manufacturing of Silicon Wafers
,”
Silicon Machining Symposium
, pp.
23
25
.
9.
Pei
,
Z. J.
,
Fisher
,
G. R.
, and
Liu
,
J.
,
2008
, “
Grinding of Silicon Wafers: A Review From Historical Perspectives
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1297
1307
.
10.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Application of Machining With Abrasives
, 2nd ed.,
Industrial Press
,
New York
.
11.
Miller
,
M. H.
, and
Dow
,
T. A.
,
1999
, “
Influence of the Grinding Wheel in the Ductile Grinding of Brittle Materials: Development and Verification of Kinematic Based Model
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
638
646
.
12.
Sharp
,
K. W.
,
Miller
,
M. H.
, and
Scattergood
,
R. O.
,
2000
, “
Analysis of the Grain Depth-of-Cut in Plunge Grinding
,”
Precis. Eng.
,
24
(
3
), pp.
220
230
.
13.
Zhang
,
Z.
,
Song
,
Y.
,
Huo
,
F.
, and
Guo
,
D.
,
2012
, “
Nanoscale Material Removal Mechanism of Soft-Brittle HgCdTe Single Crystals Under Nanogrinding by Ultrafine Diamond Grits
,”
Tribol. Lett.
,
46
(
1
), pp.
95
100
.
14.
Zhang
,
Z.
,
Song
,
Y.
,
Xu
,
C.
, and
Guo
,
D.
,
2012
, “
A Novel Model for Undeformed Nanometer Chips of Soft-Brittle HgCdTe Films Induced by Ultrafine Diamond Grits
,”
Scr. Mater.
,
67
(
2
), pp.
197
200
.
15.
Zhou
,
L.
,
Tian
,
Y. B.
,
Huang
,
H.
,
Sato
,
H.
, and
Shimizu
,
J.
,
2012
, “
A Study on the Diamond Grinding of Ultra-Thin Silicon Wafers
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
226
(
1
), pp.
66
75
.
16.
Young
,
H. T.
,
Liao
,
H. T.
, and
Huang
,
H. Y.
,
2007
, “
Novel Method to Investigate the Critical Depth of Cut of Ground Silicon Wafer
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
157
162
.
17.
Huang
,
H.
,
Wang
,
B. L.
,
Wang
,
Y.
,
Zou
,
J.
, and
Zhou
,
B.
,
2008
, “
Characteristics of Silicon Substrates Fabricated Using Nanogrinding and Chemo-Mechanical-Grinding
,”
Mat. Sci. Eng. A
,
479
(
1–2
), pp.
373
379
.
18.
Linkde
,
B. S.
,
Garretson
,
I.
,
Torner
,
F.
, and
Seewig
,
J.
,
2017
, “
Grinding Energy Modeling Based on Friction, Plowing and Shearing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121009
.
19.
Ramos
,
A. C.
,
Autenrieth
,
H.
,
Strauß
,
T.
,
Deuchert
,
M.
,
Hoffmeister
,
J.
, and
Schulze
,
V.
,
2012
, “
Characterization of the Transition From Ploughing to Cutting in Micro Machining and Evaluation of the Minimum Thickness of Cut
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
594
600
.
20.
Son
,
S. M.
,
Han
,
S. L.
, and
Ahn
,
J. H.
,
2005
, “
Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
529
535
.
21.
Liu
,
X.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
.
22.
Jiang
,
J. L.
,
Ge
,
P. Q.
,
Bi
,
W. B.
,
Zhang
,
L.
,
Wang
,
D. X.
, and
Zhang
,
Y.
,
2013
, “
2D/3D Ground Surface Topography Modeling Considering Dressing and Wear Effects in Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
29
40
.
23.
Gassilloud
,
R.
,
Ballif
,
C.
,
Gasser
,
P.
,
Buerki
,
G.
, and
Michler
,
J.
,
2005
, “
Deformation Mechanisms of Silicon During Nanoscratching
,”
Phys. Status. Solidi Appl. Mater. Sci.
,
202
(
15
), pp.
2858
2869
.
24.
Shi
,
F.
,
Shu
,
Y.
,
Dai
,
Y. F.
,
Peng
,
Q.
, and
Li
,
Y.
,
2013
, “
Magnetorheological Elastic Super-Smooth Finishing for High-Efficiency Manufacturing of Ultraviolet Laser Resistant Optics
,”
Opt. Eng.
,
52
(
7
), p.
075104
.
25.
Weiß
,
M.
,
Klocke
,
F.
,
Barth
,
S.
,
Rasim
,
M.
, and
Mattfeld
,
P.
,
2017
, “
Detailed Analysis and Description of Grinding Wheel Topographies
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
054502
.
26.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
2003
, “
On the Mechanics of the Grinding Process–Part I. Stochastic Nature of the Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
43
(
15
), pp.
1579
1593
.
27.
Li
,
K.
, and
Liao
,
T. W.
,
1997
, “
Modelling of Ceramic Grinding Processes—Part I: Number of Cutting Points and Grinding Forces Per Grit
,”
J. Mater. Process. Technol.
,
65
(
1–3
), pp.
1
10
.
28.
Zhou
,
L.
,
Ebina
,
Y.
,
Wu
,
K.
,
Shimizu
,
J.
,
Onuki
,
T.
, and
Ojima
,
H.
,
2017
, “
Theoretical Analysis on Effects of Grain Size Variation
,”
Precis. Eng
,
50
, pp.
27
31
.
29.
Suto
,
T.
, and
Sata
,
T.
,
1981
, “
Simulation of Grinding Process Based on Wheel Surface Charaterisitcs
,”
Bull. Jpn. Soc. Precis. Eng.
,
15
, pp.
27
33
.
30.
Ali
,
Y. M.
, and
Zhang
,
L. C.
,
1999
, “
Surface Roughness Prediction of Ground Components Using a Fuzzy Logic Approach
,”
J. Mater. Process. Technol.
,
89–90
, pp.
561
568
.
31.
Hecker
,
R. L.
, and
Liang
,
S. Y.
,
2003
, “
Predictive Modeling of Surface Roughness in Grinding
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
755
761
.
32.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2005
, “
A Probabilistic Approach to Predict Surface Roughness in Ceramic Grinding
,”
Int. J. Mach. Tools Manuf.
,
45
(
6
), pp.
609
616
.
33.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2005
, “
Surface Roughness Prediction Model for Ceramic Grinding
,”
ASME
Paper No. IMECE2005-79180
.
34.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2010
, “
Modeling and Prediction of Surface Roughness in Ceramic Grinding
,”
Int. J. Mach. Tools Manuf.
,
50
(
12
), pp.
1065
1076
.
35.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
327
330
.
36.
Vogler
,
M. P.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
685
694
.
37.
Lee
,
S. H.
,
2012
, “
Analysis of Ductile Mode and Brittle Transition of AFM Nanomachining of Silicon
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
71
79
.
You do not currently have access to this content.