This paper reports on numerical and experimental investigations involving examination of the effects of an interfacial gap in the range of 0–0.3 mm on keyhole and molten pool dynamics. A numerical model was developed to investigate the three-dimensional transient dynamics of the keyhole in lap welding processes with an interface gap. The model was able to reliably predict the weld profile. In addition, the modeling results provided detailed information regarding the interaction between the molten pool and the solid/liquid boundary that led to the extended weld width. Experimentally, AISI 304 stainless steel was joined in a lap welding configuration using an IPG YLR-1000 fiber laser. The tensile shear and T-peel testing of the lap joints showed that adding an adequate amount of interface gap improves weld strength.

References

1.
Zhang
,
Y.
,
Li
,
Q.
,
Xu
,
L.
, and
Duan
,
L.
,
2015
, “
A Mechanistic Study on the Inhibition of Zinc Behavior During Laser Welding of Galvanized Steel
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011011
.
2.
Graham
,
M. P.
,
Hirak
,
D. M.
,
Kerr
,
H. W.
, and
Weckman
,
D. C.
,
1994
, “
Nd: YAG Laser Welding of Coated Sheet Steel
,”
J. Laser Appl.
,
6
(
4
), pp.
212
222
.
3.
Gu
,
H.
,
2010
, “
Laser Lap Welding of Zinc Coated Steel Sheet With Laser-Dimple Technology
,”
J. Laser Appl.
,
22
(
3
), pp.
87
91
.
4.
Chen
,
G.
,
Mei
,
L.
,
Zhang
,
M.
,
Zhang
,
Y.
, and
Wang
,
Z.
,
2013
, “
Research on Key Influence Factors of Laser Overlap Welding of Automobile Body Galvanized Steel
,”
Opt. Laser Technol.
,
45
, pp.
726
733
.
5.
Alshaer
,
A. W.
,
Li
,
L.
, and
Mistry
,
A.
,
2015
, “
Understanding the Effect of Heat Input and Sheet Gap on Porosity Formation in Fillet Edge and Flange Couch Laser Welding of AC-170PX Aluminum Alloy for Automotive Component Manufacture
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021011
.
6.
Hong
,
K. M.
, and
Shin
,
Y. C.
,
2016
, “
The Effects of Interface Gap on Weld Strength During Overlapping Fiber Laser Welding of AISI 304 Stainless Steel and AZ31 Magnesium Alloys
,”
Int. J. Adv. Manuf. Technol.
, epub.
7.
Kroos
,
J.
,
Gratzke
,
U.
, and
Simon
,
G.
,
1993
, “
Towards a Self-Consistent Model of the Keyhole in Penetration Laser Beam Welding
,”
J. Phys. D: Appl. Phys.
,
26
(
3
), p.
474
.
8.
Kaplan
,
A.
,
1994
, “
A Model of Deep Penetration Laser Welding Based on Calculation of the Keyhole Profile
,”
J. Phys. D: Appl. Phys.
,
27
(
9
), p.
1805
.
9.
Semak
,
V. V.
,
Bragg
,
W. D.
,
Damkroger
,
B.
, and
Kempka
,
S.
,
1999
, “
Transient Model for the Keyhole During Laser Welding
,”
J. Phys. D: Appl. Phys.
,
32
(
15
), p.
L61
.
10.
Lee
,
J. Y.
,
Ko
,
S. H.
,
Farson
,
D. F.
, and
Yoo
,
C. D.
,
2002
, “
Mechanism of Keyhole Formation and Stability in Stationary Laser Welding
,”
J. Phys. D: Appl. Phys.
,
35
(
13
), p.
1570
.
11.
Zhao
,
H.
,
Niu
,
W.
,
Zhang
,
B.
,
Lei
,
Y.
,
Kodama
,
M.
, and
Ishide
,
T.
,
2011
, “
Modelling of Keyhole Dynamics and Porosity Formation Considering the Adaptive Keyhole Shape and Three-Phase Coupling During Deep-Penetration Laser Welding
,”
J. Phys. D: Appl. Phys.
,
44
(
48
), p.
485302
.
12.
Chang
,
B.
,
Allen
,
C.
,
Blackburn
,
J.
,
Hilton
,
P.
, and
Du
,
D.
,
2015
, “
Fluid Flow Characteristics and Porosity Behavior in Full Penetration Laser Welding of a Titanium Alloy
,”
Metall. Mater. Trans. B
,
46
(
2
), pp.
906
918
.
13.
Ki
,
H.
,
Mazumder
,
J.
, and
Mohanty
,
P. S.
,
2002
, “
Modeling of Laser Keyhole Welding—Part I: Mathematical Modeling, Numerical Methodology, Role of Recoil Pressure, Multiple Reflections, and Free Surface Evolution
,”
Metall. Mater. Trans. A
,
33
(
6
), pp.
1817
1830
.
14.
Ki
,
H.
,
Mazumder
,
J.
, and
Mohanty
,
P. S.
,
2002
, “
Modeling of Laser Keyhole Welding—Part II: Simulation of Keyhole Evolution, Velocity, Temperature Profile, and Experimental Verification
,”
Metall. Mater. Trans. A
,
33
(
6
), pp.
1831
1842
.
15.
Dasgupta
,
A. K.
,
Mazumder
,
J.
, and
Li
,
P.
,
2007
, “
Physics of Zinc Vaporization and Plasma Absorption During CO2 Laser Welding
,”
J. Appl. Phys.
,
102
(
5
), p.
053108
.
16.
Tan
,
W.
,
Bailey
,
N. S.
, and
Shin
,
Y. C.
,
2013
, “
Investigation of Keyhole Plume and Molten Pool Based on a Three-Dimensional Dynamic Model With Sharp Interface Formulation
,”
J. Phys. D: Appl. Phys.
,
46
(
5
), p.
055501
.
17.
Tan
,
W.
, and
Shin
,
Y. C.
,
2014
, “
Analysis of Multi-Phase Interaction and Its Effects on Keyhole Dynamics With a Multi-Physics Numerical Model
,”
J. Phys. D: Appl. Phys.
,
47
(
34
), p.
345501
.
18.
Pang
,
S.
,
Shao
,
X.
,
Li
,
W.
,
Chen
,
X.
, and
Gong
,
S.
,
2016
, “
Dynamic Characteristics and Mechanisms of Compressible Metallic Vapor Plume Behaviors in Transient Keyhole During Deep Penetration Fiber Laser Welding
,”
Appl. Phys. A
,
122
(
7
), p. 702.
19.
Geiger
,
M.
,
Leitz
,
K. H.
,
Koch
,
H.
, and
Otto
,
A.
,
2009
, “
A 3D Transient Model of Keyhole and Melt Pool Dynamics in Laser Beam Welding Applied to the Joining of Zinc Coated Sheets
,”
Prod. Eng.
,
3
(
2
), pp.
127
136
.
20.
Luo
,
M.
, and
Shin
,
Y. C.
,
2015
, “
Estimation of Keyhole Geometry and Prediction of Welding Defects During Laser Welding Based on a Vision System and a Radial Basis Function Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
263
276
.
21.
Luo
,
M.
, and
Shin
,
Y. C.
,
2015
, “
Vision-Based Weld Pool Boundary Extraction and Width Measurement During Keyhole Fiber Laser Welding
,”
Opt. Lasers Eng.
,
64
, pp.
59
70
.
22.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Merriman
,
B.
, and
Osher
,
S.
,
1996
, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
,
124
(
2
), pp.
449
464
.
23.
Osher
,
S.
, and
Fedkiw
,
R. P.
,
2001
, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
,
169
(
2
), pp.
463
502
.
24.
Zhou
,
J.
,
Tsai
,
H. L.
, and
Wang
,
P. C.
,
2006
, “
Transport Phenomena and Keyhole Dynamics During Pulsed Laser Welding
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
680
690
.
25.
Amara
,
E. H.
, and
Fabbro
,
R.
,
2008
, “
Modelling of Gas Jet Effect on the Melt Pool Movements During Deep Penetration Laser Welding
,”
J. Phys. D: Appl. Phys.
,
41
(
5
), p.
055503
.
26.
Lancaster
,
J. F.
,
1986
,
The Physics of Welding
, 2nd ed.,
Pergamon Press
,
Oxford, UK
.
27.
Murphy
,
A. B.
,
Tanaka
,
M.
,
Yamamoto
,
K.
,
Tashiro
,
S.
,
Sato
,
T.
, and
Lowke
,
J. J.
,
2009
, “
Modelling of Thermal Plasmas for Arc Welding: The Role of the Shielding Gas Properties and of Metal Vapour
,”
J. Phys. D: Appl. Phys.
,
42
(
19
), p.
194006
.
28.
Wen
,
S.
, and
Shin
,
Y. C.
,
2010
, “
Modeling of Transport Phenomena During the Coaxial Laser Direct Deposition Process
,”
J. Appl. Phys.
,
108
(
4
), p.
044908
.
29.
He
,
X.
,
DebRoy
,
T.
, and
Fuerschbach
,
P. W.
,
2003
, “
Alloying Element Vaporization During Laser Spot Welding of Stainless Steel
,”
J. Phys. D: Appl. Phys.
,
36
(
23
), p.
3079
.
30.
Li
,
D.
, and
Merkle
,
C. L.
,
2006
, “
A Unified Framework for Incompressible and Compressible Fluid Flows
,”
J. Hydrodyn., Ser. B
,
18
(
3
), pp.
113
119
.
31.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
,
New York
.
32.
Fedkiw
,
R. P.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1999
, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method)
,”
J. Comput. Phys.
,
152
(
2
), pp.
457
492
.
33.
Knight
,
C. J.
,
1979
, “
Theoretical Modeling of Rapid Surface Vaporization With Back Pressure
,”
AIAA J.
,
17
(
5
), pp.
519
523
.
34.
Semak
,
V.
, and
Matsunawa
,
A.
,
1997
, “
The Role of Recoil Pressure in Energy Balance During Laser Materials Processing
,”
J. Phys. D: Appl. Phys.
,
30
(
18
), p.
2541
.
35.
Funk
,
E. R.
, and
Rieber
,
L. J.
,
1985
,
Handbook of Welding
,
Breton Publishers
,
Albany, NY
.
36.
Meng
,
W.
,
Li
,
Z.
,
Huang
,
J.
,
Wu
,
Y.
, and
Cao
,
R.
,
2013
, “
Effect of Gap on Plasma and Molten Pool Dynamics During Laser Lap Welding for T-Joints
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1105
1112
.
You do not currently have access to this content.