Various brittle–ductile transition (BDT) criteria have been developed in the literature to estimate the critical conditions for ductile microcutting of brittle materials. This study provides a unified criterion to efficiently and accurately estimate the critical condition based on the indentation model on brittle materials. The unified criterion correlates with the cutting edge radius, material properties, and a dimensionless coefficient fitted by the experimental data. It shows that the cutting edge geometry is the dominant factor and the maximum undeformed chip thickness (MUCT) can be used as the unified criterion in BDTs. Based on the proposed model, microturning and micromilling have been analyzed to determine the threshold value of the MUCT for ductile microcutting. The model has been validated by the experimental data. Based on the models and three-dimensional geometrical model of microcutting, a further analysis shows that the process conditions greatly affect the microcutting efficiency even though all the conditions may achieve the ductile-regime cutting.

References

1.
Rusnaldy
,
Ko
,
T. J.
, and
Kim
,
H. S.
,
2007
, “
Micro-End-Milling of Single-Crystal Silicon
,”
Int. J. Mach. Tools Manuf.
,
47
(
14
), pp.
2111
2119
.10.1016/j.ijmachtools.2007.05.003
2.
Matsumura
,
T.
,
Aristimuno
,
P.
,
Gandarias
,
E.
, and
Arrazola
,
P. J.
,
2013
, “
Cutting Process in Glass Peripheral Milling
,”
J. Mater. Process. Technol.
,
213
(
9
), pp.
1523
1531
.10.1016/j.jmatprotec.2013.02.002
3.
Liu
,
K.
,
Li
,
X. P.
,
Rahman
,
M.
,
Neo
,
K. S.
, and
Liu
,
X. D.
,
2007
, “
A Study on the Effect of Tool Cutting Edge Radius on Ductile Cutting of Silicon Wafers
,”
Int. J. Adv. Manuf. Technol.
,
32
(
7–8
), pp.
631
637
.10.1007/s00170-005-0364-7
4.
Rusnaldy
,
Ko
,
T. J.
, and
Kim
,
H. S.
,
2008
, “
An Experimental Study on Microcutting of Silicon Using a Micromilling Machine
,”
Int. J. Adv. Manuf. Technol.
,
39
(
1–2
), pp.
85
91
.10.1007/s00170-007-1211-9
5.
Chao
,
C. L.
,
Ma
,
K. J.
,
Liu
,
D. S.
,
Bai
,
C. Y.
, and
Shy
,
T. L.
,
2002
, “
Ductile Behavior in Single-Point Diamond-Turning of Single-Crystal Silicon
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
187
190
.10.1016/S0924-0136(02)00124-3
6.
Blake
,
P. N.
,
1990
, “
Ductile-Regime Machining of Germanium and Silicon
,”
J. Am. Ceram. Soc.
,
73
(
4
), pp.
949
957
.10.1111/j.1151-2916.1990.tb05142.x
7.
Fang
,
F. Z.
,
Wu
,
H.
, and
Liu
,
Y. C.
,
2005
, “
Modeling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon
,”
Int. J. Mach. Tools. Manuf.
,
45
(
15
), pp.
1681
1686
.10.1016/j.ijmachtools.2005.03.010
8.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2007
, “
Molecular Dynamics Modeling and Simulation of Nanoscale Ductile Cutting of Silicon
,”
Int. J. Comput. Appl. Technol.
,
28
(
1
), pp.
2
8
.10.1504/IJCAT.2007.012325
9.
Tanaka
,
H.
,
Shimada
,
S.
, and
Ikawa
,
N.
,
2004
, “
Brittle-Ductile Transition in Monocrystalline Silicon Analysed by Molecular Dynamics Simulation
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
6
), pp.
583
590
.10.1243/095440604774202213
10.
Inanura
,
T.
,
Takezawa
,
N.
, and
Kumaki
,
Y.
,
1994
, “
Mechanics and Energy Dissipation in Nanoscale Cutting
,”
CIRP Ann. - Manuf. Technol.
,
42
(
1
), pp.
79
82
.10.1016/S0007-8506(07)62396-8
11.
Zhang
,
X. Q.
,
Arif
,
M.
,
Liu
,
K.
,
Kumar
,
A. S.
, and
Rahman
,
M.
,
2013
, “
A Model to Predict the Critical Undeformed Chip Thickness in Vibration-Assisted Cutting of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
69
, pp.
57
66
.10.1016/j.ijmachtools.2013.03.006
12.
Arefin
,
S.
,
Li
,
X. P.
,
Rahman
,
M.
, and
Liu
,
K.
,
2007
, “
The Upper Bound of Tool Edge Radius for Nanoscale Ductile Mode Cutting of Silicon Wafer
,”
Int. J. Mach. Tools Manuf.
,
31
(
7–8
), pp.
655
662
.10.1007/s00170-005-0245-0
13.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2011
, “
Analytical Model to Determine the Critical Feed per Edge for Ductile Brittle Transition in Milling Process of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
170
181
.10.1016/j.ijmachtools.2010.12.003
14.
Chiu
,
W. C.
,
Endres
,
W. J.
, and
Thouless
,
M. D.
,
2001
, “
An Analysis of Surface Cracking During Orthogonal Cutting of Glass
,”
Mach. Sci. Technol.
,
5
(
2
), pp.
195
215
.10.1081/MST-100107843
15.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2012
, “
Analytical Model to Determine the Critical Conditions for the Modes of Materials Removal in the Milling Process of Brittle Material
,”
J. Mater. Process. Technol.
,
212
(
9
), pp.
1925
1933
.10.1016/j.jmatprotec.2012.04.014
16.
Lawn
,
B. R.
, and
Evans
,
A. G.
,
1977
, “
A Model for Crack Initiation in Elastic/Plastic Indentation Fields
,”
J. Mater. Sci.
,
12
(
11
), pp.
2195
2199
.10.1007/BF00552240
17.
Pethica
,
J. B.
,
Hutchings
,
R.
, and
Oliver
,
W. C.
,
1983
, “
Hardness Measurement at Penetration Depths as Small as 20 nm
,”
Philos. Mag. A
,
48
(
4
), pp.
593
606
.10.1080/01418618308234914
18.
Lawn
,
B.
,
1983
,
Fracture of Brittle Solids
,
Cambridge University
, Cambridge, UK.
19.
George
,
J.
, and
Peter
,
G.
,
1985
, “
Microindentation Analysis of Di-Ammonium Hydrogen Citrate Single Crystals
,”
J. Mater. Sci.
,
20
(
9
), pp.
3150
3156
.10.1007/BF00545180
20.
Tiwari
,
A.
,
2013
,
Nanomechanical Analysis of High Performance Materials
,
Springer
, London.
21.
Lawn
,
B. R.
,
Marshall
,
D. B.
, and
Wiederhorn
,
S. M.
,
1979
, “
Strength Degradation of Glass Impacted With Sharp Particles—2. Tempered Surfaces
,”
J. Am. Ceram. Soc.
,
62
(
1–2
), pp.
71
74
.10.1111/j.1151-2916.1979.tb18809.x
22.
Jajam
,
K. J.
, and
Tippur
,
H. V.
,
2012
, “
Quasi-Static and Dynamic Fracture Behavior of Particulate Polymer Composites: A Study of Nano- vs. Micro-Size Filler and Loading-Rate Effects
,”
Composites, Part B
,
43
(
8
), pp.
3467
3481
.10.1016/j.compositesb.2012.01.042
23.
Chen
,
M. J.
,
Don
,
S.
,
Li
,
D.
, and
Zhang
,
F. H.
,
2000
, “
Study on Critical Condition of Brittle Ductile Transition of Brittle Materials of Ultra-Precision Grinding
,”
High Technol. Lett.
,
10
(
2
), pp.
67
70
.
24.
Cheng
,
X.
,
Wang
,
Z. G.
,
Nakamoto
,
K.
, and
Yamazaki
,
K.
,
2010
, “
Design and Development of PCD Micro Straight Edge End Mills for Micro/Nano Cutting of Hard and Brittle Materials
,”
J. Mech. Sci. Technol.
,
24
(
11
), pp.
1
8
.10.1007/s12206-010-0804-7
You do not currently have access to this content.