Ultrasonic welding is a solid-state bond created using ultrasonic energy. It has been used in the semiconductor industry for several decades, and more recently, in the automotive industry such as for lithium-ion battery welding. Although there existed numerical simulations for ultrasonic welding, the models were limited to two-layer and like materials stackups. In this study, finite element theories are introduced and simulation procedure is established for multiple sheets and dissimilar metal ultrasonic welding. The procedures require both abaqus/Standard and abaqus/Explicit to simulate the coupled mechanical-thermal phenomena over the entire weld duration with moderate computational cost. The procedure is verified and used to simulate selected specific cases involving multiple sheets and dissimilar materials, i.e., copper and aluminum. The simulation procedure demonstrates its capability to predict welding energy, distortion, and temperature distribution of the workpieces. Case studies of ultrasonic welding simulations for multiple layers of lithium-ion battery tabs are presented. The prediction leads to several innovative ultrasonic welding process designs for improved welding quality.

References

1.
Graff
,
K. F.
,
1974
, “
Process Applications of Power Ultrasonics—A Review
,” Proceedings of IEEE Ultrasonics Symposium, pp.
628
641
.
2.
Tsujino
,
J.
,
Hasegawa
,
K.
,
Sone
,
Y.
, and
Nozaki
,
K.
,
1996
, “
Frequency Characteristics of Ultrasonic Wire Bonding Using High Frequency Vibration Systems of 40 Khz to 780 Khz
,” Proceedings of the IEEE Ultrasonics Symposium, San Antonio, TX, Vol. 2, pp.
1021
1026
.
3.
Gao
,
Y.
, and
Doumanidis
,
C.
,
2002
, “
Mechanical Analysis of Ultrasonic Bonding for Rapid Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
426
434
.10.1115/1.1459082
4.
Born
,
C.
,
Wagner
,
G.
, and
Eifler
,
D.
,
2006
, “
Ultrasonically Welded Aluminum Foams/Sheet Metal—Joints
,”
Adv. Eng. Mater.
,
8
(
9
), pp.
816
820
.10.1002/adem.200600083
5.
Tian
,
Y.
,
Wang
,
W.
,
Lum
, I
.
,
Mayer
,
M.
,
Jung
,
J. P.
, and
Zhou
,
Y.
,
2008
, “
Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature
,”
J. Mater. Process. Technol.
,
208
, pp.
179
186
.10.1016/j.jmatprotec.2007.12.134
6.
Chan
,
Y. H.
,
Kim
,
J. K.
,
Liu
,
D.
,
Liu
,
P. C. K.
,
Cheung
,
Y. M.
, and
Ng
,
M. W.
,
2006
, “
Comparative Performance of Gold Wire Bonding on Rigid and Flexible Substrates
,”
J. Mater. Sci.: Mater. Electron.
,
17
, pp.
597
606
.10.1007/s10854-006-0005-4
7.
Ding
,
Y.
, and
Kim
,
J. K.
,
2008
, “
Numerical Analysis of Ultrasonic Wire Bonding: Part 2. Effects of Bonding Parameters on Temperature Rise
,”
Microelectron. Reliab.
,
48
, pp.
149
157
.10.1016/j.microrel.2007.01.083
8.
Li
,
H.
,
Choi
,
H.
,
Ma
,
C.
,
Zhao
,
J.
,
Jiang
,
H.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
X.
,
2013
, “
Transient Temperature and Heat Flux Measurements in Ultrasonic Joining of Battery Tabs Using Thin-Film Micro Sensors
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p. 051015.10.1115/1.4024816
9.
Zhao
,
J.
,
Li
,
H.
,
Choi
,
H.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
X.
,
2013
, “
Insertable Thin Film Thermocouples for In-Situ Transient Temperature Monitoring in Ultrasonic Metal Welding of Battery Tabs
,”
J. Manuf. Process.
,
15
(
1
), pp.
136
140
.10.1016/j.jmapro.2012.10.002
10.
Kim
,
T.
,
Yum
,
J.
,
Hu
,
S. J.
,
Spicer
,
J. P.
, and
Abell
,
J. A.
,
2011
, “
Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials
,”
CIRP Ann.
,
60
(
1
), pp.
17
20
.10.1016/j.cirp.2011.03.016
11.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W.
,
Abell
,
J. A.
, and
Li
,
J.
,
2013
, “
Characterization of Ultrasonic Metal Weld Quality for Lithium-Ion Battery Tab Joining
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021004
.10.1115/1.4024152
12.
Zhao
,
N.
,
Li
,
W.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2013
, “
Fatigue Life Prediction Model and Its Application in Lithium-Ion Battery Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
(submitted).
13.
Lee
,
D.
,
Kannatey-Asibu
, Jr.,
E.
, and
Cai
,
W.
,
2012
, “
Ultrasonic Welding Simulations for Multiple, Thin and Dissimilar Metals
,” Proceedings of ASME International Symposium on Flexible Automation, June 18–20, St. Louis, MO.
14.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2013
, “
Dynamic Response of Battery Tabs Under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p. 051013.10.1115/1.4024535
15.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2013
, “
Dynamic Stress Analysis of Battery Tabs under Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
(in press).
16.
Lee
,
S. S.
,
Kim
,
T. H.
,
Cai
,
W.
, and
Abell
,
J. A.
,
2013
, “
Parasitic Vibration Attenuation in Ultrasonic Welding of Battery Tabs
,”
Int. J. Adv. Manuf. Technol.
(in press).
17.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2013
, “
Vibrational Energy Loss Analysis of Battery Cu Coupon in Ultrasonic Welding
,”
J. Manuf. Process.
(in press).
18.
Viswanath
,
A. G. K.
,
Zhang
,
X.
,
Ganesh
, V
. P.
, and
Chun
,
L.
,
2007
, “
Numerical Study of Gold Wire Bonding Process on Cu/Low-K Structures
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
448
456
.10.1109/TADVP.2006.890213
19.
Liu
,
Y.
,
Irving
,
S.
, and
Luk
,
T.
,
2008
, “
Thermosonic Wire Bonding Process Simulation and Bond Pad Over Active Stress Analysis
,”
IEEE Trans. Electron. Packag. Manuf.
,
31
(
1
), pp.
61
71
.10.1109/TEPM.2007.914232
20.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2008
, “
Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects
,”
Mech. Mater.
,
40
, pp.
982
1000
.10.1016/j.mechmat.2008.06.004
21.
Elangovan
,
S.
,
Semeer
,
S.
, and
Prakasan
,
K.
,
2009
, “
Temperature and Stress Distribution in Ultrasonic Metal Welding—An FEA-Based Study
,”
J. Mater. Process. Technol.
,
209
, pp.
1143
1150
.10.1016/j.jmatprotec.2008.03.032
22.
Zhang
,
C.
, and
Li
,
L.
,
2009
, “
A Coupled Thermal-Mechanical Analysis of Ultrasonic Bonding Mechanism
,”
Metall. Mater. Trans. B
,
40B
, pp.
196
207
.10.1007/s11663-008-9224-9
23.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A
,
2010
, “
Joining Technologies for Automotive Lithium-Ion Battery Manufacturing—A Review
,” Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, Oct. 12–15, Erie, PA, Paper No. MSEC2010-34168.
24.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
, pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
25.
Simulia Co.,
2008
, Abaqus Users' Manuals (v. 6.8), Providence, RI.
26.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
,
1970
,
Thermophysical Properties of Matter
, Vol. 4,
IFI/Plenum
,
New York
.
27.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
,
1970
,
Thermophysical Properties of Matter
, Vol. 1,
IFI/Plenum
,
New York
.
28.
Song
,
S.
,
Yovanovich
,
M. M.
, and
Goodman
,
F. O.
,
1993
, “
Thermal Gap Conductance of Conforming Surfaces in Contact
,”
ASME Trans. J. Heat Transfer
,
115
, pp.
533
540
.10.1115/1.2910719
29.
Touloukian
,
Y. S.
,
Kirby
,
R. K.
,
Taylor
,
R. E.
, and
Desai
,
P. D.
,
1975
,
Thermophysical Properties of Matter
, Vol. 12,
IFI/Plenum
,
New York
.
30.
Kaufman
,
J. G.
,
1999
, “
Properties of Aluminum Alloys
,”
ASM International
,
Materials Park, OH
.
31.
Upthegrove
,
C.
, and
Burghoff
,
H. L.
,
1956
, Elevated-Temperature Properties of Coppers and Copper-Base Alloys,
ASTM
,
Philadelphia, PA
.
32.
Bower
,
A. F.
,
1989
, “
Cyclic Hardening Properties of Hard-Drawn Copper and Rail Steel
,”
J. Mech. Phys. Solids
,
37
, pp.
455
470
.10.1016/0022-5096(89)90024-0
33.
Cai
,
W.
,
Spacher
,
P. F.
,
Storm
, Jr.,
E. M.
,
Xiao
,
X.
, and
Smyth
,
S. M.
,
2013
, “
Thermally-Insulated Vibration Welding Tool
,” U. S. Patent No. 8,444,039.
You do not currently have access to this content.