Electrochemical grinding (ECG) at macrolevel and microlevel finds increasing use in medical device manufacturing industry. To enhance application of micro-ECG, a comprehensive study of the role electrolyte flow in the formation of hydroxide layer on a workpiece due to electrochemical dissolution, and its removal due to abrasion by a grinding wheel, and erosion by an electrolyte flow has been conducted. Specifically, this paper presents modeling and experimental analysis of turbulent flow in the interelectrode gap (IEG) in the micro-ECG to predict shear stresses at the workpiece boundary. It was found that the shearing forces on the hydroxide layer increase with an increase in electrolyte flow velocity but are halved when the IEG is doubled. Besides elucidating the process mechanism, the theoretical values of forces and metal removal rate (MRR) have been validated experimentally.

References

1.
Masuzawa
,
T.
,
2000
, “
State of the Art of Micromachining
,”
CIRP Ann.
,
49
(
2
), pp.
473
488
.10.1016/S0007-8506(07)63451-9
2.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.
,
55
(
2
), pp.
745
768
.10.1016/j.cirp.2006.10.006
3.
Gaikwad
,
K.
, and
Joshi
,
S. S.
,
2008
, “
Modeling of Material Removal Rate in Micro-ECG
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
034502
.10.1115/1.2844587
4.
Rajurkar
,
K. P.
,
Levy
,
G.
,
Malshe
,
A.
,
Sundaram
,
M. M.
,
McGeough
,
J.
,
Hu
,
X.
,
Resnick
,
R.
, and
DeSilva
,
A.
,
2006
, “
Micro and Nano Machining by Electro-Physical and Chemical Processes
,”
CIRP Ann.
,
55
(
2
), pp.
643
666
.10.1016/j.cirp.2006.10.002
5.
Rajurkar
,
K. P.
,
Zhu
,
D.
,
McGeough
,
J. A.
,
Kozak
,
J.
, and
De Silva
,
A.
,
1999
, “
New Developments in Electro-Chemical Machining
,”
CIRP Ann.
,
48
(
2
), pp.
567
579
.10.1016/S0007-8506(07)63235-1
6.
Malkin
,
S.
, and
Levinger
,
R.
,
1979
, “
Electrochemical Grinding of WC-Co Cemented Carbides
,”
ASME J. Eng. Industry
,
101
(3)
, pp.
285
294
.10.1115/1.3439509
7.
Kozak
,
J.
,
Rajurkar
,
K.
, and
Makkar
,
Y.
,
2004
, “
Selected Problems in Micro-Electrochemical Machining
,”
J. Mater. Process Technol.
,
149
(
1–3
), pp.
426
431
.10.1016/j.jmatprotec.2004.02.031
8.
Kaczmarek
,
J.
, and
Zachwieja
,
T.
,
1966
, “
Investigations on the Material Removal Rate by Electrochemical Grinding of Cutting Tool Materials in Dependence on the Properties of the Grinding Wheel
,”
Int. J. Mach. Tool Des. Res.
,
6
(
1
), pp.
1
13
.10.1016/0020-7357(66)90002-3
9.
Ilhan
,
R.
,
Sathyanarayanan
,
G.
,
Storer
,
R.
, and
Phillips
,
R.
,
1992
, “
A Study of Wheel Wear in Electrochemical Surface Grinding
,”
ASME J. Eng. Industry
,
114
(1)
, pp.
82
93
.10.1115/1.2899762
10.
Kuppuswamy
,
G.
,
1976
, “
Wheel Variables in Electrolytic Grinding
,”
Tribol. Int.
,
9
(
1
), pp.
29
32
.10.1016/0301-679X(76)90067-0
11.
Geddam
,
A.
, and
Noble
,
C. F.
,
1981
, “
An Assessment of the Influence of Some Wheel Variables in Peripheral Electrochemical Grinding
,”
Int. J. Mach. Tool Des. Res.
,
11
, pp.
1
12
.10.1016/0020-7357(71)90043-6
12.
Cole
,
R. R.
,
1961
, “
An Experimental Investigation of the Electrolytic Grinding Process
,”
ASME J. Eng. Industry
,
83
(
2
), pp.
194
201
.10.1115/1.3664459
13.
Hourng
,
L. W.
, and
Chang
,
C. S.
,
1994
, “
Numerical Simulation of Two-Dimensional Fluid Flow in Electrochemical Drilling
,”
J. Appl. Electrochem.
,
24
, pp.
1170
1175
.10.1007/BF00241317
14.
Blazek
,
J.
,
2001
,
Computational Fluid Dynamics: Principles and Applications
, 1st ed.,
Elsevier Science Limited
,
Oxford, UK
.
15.
Garde
,
R. J.
,
1994
,
Turbulent Flow
,
Wiley Eastern Ltd
.,
New Delhi, India
, pp.
103
119
.
16.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Nithiarasu
,
P.
,
2005
,
The Finite Element Method for Fluid Dynamics
, 6th ed.,
Butterworth-Heinemann
,
New York
, pp.
248
256
.
You do not currently have access to this content.