The effect of transformation hardening depends upon both heating and cooling rates. It is desirable to have a slow heating rate and a rapid cooling rate to achieve full transformation. To date laser transformation hardening has been carried out using circular or rectangular beams which result in rapid heating and cooling. Although the use of different beam intensity distributions within the circular or rectangular laser beams has been studied to improve the process, no other beam geometries have been investigated so far for transformation hardening. This paper presents an investigation into the effects of different laser beam geometries in transformation hardening. Finite element modeling technique has been used to simulate the steady state and transient effects of moving beams in transformation hardening of EN 43A steel. The results are compared with experimental data. The work shows that neither of the two commonly used beams, circular and rectangular, are optimum beam shapes for transformation hardening. The homogenization temperature exceeds the melting point for these beam shapes for the usual laser scanning speeds and power density. Triangular beam geometry has been shown to produce the best thermal history to achieve better transformation and highest hardness due to slower heating without sacrificing the processing rate and hardening depths.

1.
Sandven
,
O.
, 1981,
Laser Surface Transformation Hardening, Metals Handbook
, 9th ed.,
ASM
,
Metals Park, OH
, Vol.
4
.
2.
Gaude-Fugarolas
,
D.
, and
Bhadeshia
,
H. K. D. H.
, 2003, “
A Model for Austenitisation of Hypoeutectoid Steels
,”
J. Mater. Sci.
0022-2461,
38
, pp.
1195
1201
.
3.
Jacot
,
A.
, and
Rappaz
,
M.
, 1996, “
A Two-Dimensional Diffusion Model for the Prediction of Phase Transformations: Application to Austentization and Homogenization of Hypoeutectoid Fe-C Steels
,”
Acta Mater.
1359-6454,
45
, pp.
575
585
.
4.
Jacot
,
A.
, and
Rappaz
,
M.
, 1998, “
A Combined Model for the Description of Austenitization, Homogenization and Grain Growth in Hypoeutctoid Fe-C Steels During Heating
,”
Acta Mater.
1359-6454,
47
, pp.
1645
1651
.
5.
Ashby
,
M. F.
, and
Easterling
,
K. E.
, 1984, “
The Transformation Hardening of Steel; Surfaces by Laser Beams-I. Hypo-Eutectoid Steels
,”
Acta Metall.
0001-6160,
32
, pp.
1935
1948
.
6.
Na
,
S. J.
, and
Yang
,
Y. S.
, 1988, “
Influence of Heating Rate on the Laser Surface Hardening of a Medium Carbon Steel
,”
Surf. Coat. Technol.
0257-8972,
34
, pp.
319
330
.
7.
Fiorletta
,
C.
, 1981, “
Electron-Beam Heat Treating
,” in
Metals Hand Book
, 9th ed.,
ASM
,
Metals Park, OH
, Vol.
4
, pp.
518
521
.
8.
Li
,
W. B.
,
Easterling
,
K. E.
, and
Ashby
,
M. F.
, 1986, “
Laser Transformation Hardening of Steel-Ii. Hypereutctoid Steels
,”
Acta Metall.
0001-6160,
34
, pp.
1533
1543
.
9.
Chen
,
T. L.
,
Guan
,
Y. H.
,
Wang
,
H. G.
, and
Zhang
,
J. T.
, 1997, “
A Study on the Austenite Transformation During Laser Heating
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
546
549
.
10.
Kraposhin
,
V. S.
,
Shakhlevich
,
K. V.
, and
Vyaz’mina
,
T. M.
1990, “
Influence of Laser Heating on the Quantity Residual Austenite in Steels and Cast Irons
,”
Metal Sci. Heat Treatment (English Translation of Metallovedenie I Termicheskaya Obrabotka Metallov)
,
31
(
9–10
), pp.
745
757
.
11.
Safonov
,
A. N.
,
Tarasenko
,
V. M.
,
Baskov
,
A. F.
,
Nikitin
,
A. A.
,
Lyasotskii
,
I. V.
, and
Sanfanov
,
E. V.
, 1985, “
Influence of the Original Structure on Hardening of ShKh15 Steel in Treatment by CO2Laser Radiation
,”
Metal Sci. Heat Treatment
,
27
(
3–4
), pp.
252
257
.
12.
Blaes
,
L.
,
Bauer
,
P.
,
Gonser
,
U.
, and
Kern
,
R.
, 1988, “
Depth Profile of a Laser Irradiated Steel
,”
Z. Metallkd.
0044-3093,
79
(
5
), pp.
278
281
.
13.
Shiue
,
R. K.
, and
Chen
,
C.
, 1991, “
Microstructural Observations of the Laser-Hardened 1045 Steel
,”
Scr. Metall. Mater.
0956-716X,
25
(
8
), pp.
1189
1894
.
14.
Bernshteyn
,
M. L.
,
Prokoshkin
,
S. D.
,
Kaputkina
,
L. N.
,
Kal’Ner
,
Yu. V.
, and
Bernshteyn
,
A. M.
, 1989, “
X-Ray Diffraction Examination of the Structure of Carbon Steels After Laser Heat Treatment
,”
Phys. Met. Metallogr.
0031-918X,
67
(
5
), pp.
128
135
.
15.
Bergmann
,
H. W.
, and
Geissein
,
E.
, 1990, presented at ECLAT’90, Erlangen, Germany.
16.
Fedosov
,
S. A.
, 1999, “
Laser Beam Hardening of Carbon and Low Alloyed Steels: Discussion of Increased Quantity of Retained Austenite
,”
J. Mater. Sci.
0022-2461, pp.
4259
4264
.
17.
Beranger
,
G.
,
Henry
,
G.
, and
Sanz
,
G.
, 1996,
The Book of Steel
,
Intercept Ltd.
,
Andover, UK
.
18.
Cole
,
C. E.
,
Noden
,
S. C.
,
Tyrer
,
J. R.
, and
Hilton
,
P. A.
, 1998, “
The Application of Difractive Optical Elements in High Power Laser Material Processing
,”
Proceedings of the Laser Materials Processing Conference ICALEO'98
, Nov., Orlando, FL, Vol.
1
, Part I, pp.
A84
A93
.
19.
Primartomo
,
A.
,
Williams
,
K.
, and
Ashcroft
,
I.
, 2005, “
Laser Transformation Hardening Using Customised Laser Beam Profiling
,”
The Industrial Laser User
, No. 38, March.
20.
Bewsher
,
A.
,
Powell
,
I.
, and
Boland
,
W.
, 1996, “
Design of Single-Element Laser Beam Shape Projectors
,”
Appl. Opt.
0003-6935,
35
, pp.
1654
1658
.
21.
Kock
,
D. J.
, 2004, “
Lasers Offer Unique Heat Treating Capabilities
,” www.industrialheating.com
22.
Wei
,
P. S.
,
Ho
,
C. Y.
,
Shian
,
M. D.
, and
Hu
,
C. L.
, 1997, “
Three-Dimensional Analytical Temperature Field and Its Application to Solidification Characteristics in High and Low Power Density Beam Welding
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2283
2292
.
23.
Shuja
,
S. Z.
, and
Yilbas
,
B. S.
, 2000, “
3-Dimensional Conjugate Laser Heating of a Moving Slab
,”
Appl. Surf. Sci.
0169-4332,
167
, pp.
134
148
.
24.
Kar
,
A.
,
Scott
,
J. E.
, and
Latham
,
W. P.
, 1996, “
Effect of Mode Structure on Three-Dimensional Laser Heating Due to Single or Multiple Rectangular Laser Beams.
,”
J. Appl. Phys.
0021-8979,
80
, pp.
667
674
.
25.
Dai
,
K.
, and
Shaw
,
J. E.
, 2001, “
Thermal and Stress Modelling of Multi-Material Laser Processing
,”
Acta Mater.
1359-6454,
49
, pp.
4171
4181
.
26.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
, 2002, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
0890-6955,
452
, pp.
61
67
.
27.
Shankar
,
V.
, and
Gnanamuthu
,
D.
, 1986, “
Computational Simulation of Heat Transfer in Laser Melted Material Flow
,” presented at AIAA 24th Int. Aerospace Sci. Meeting, Reno, NV.
28.
Incropera
,
F. P.
, 2002,
Introduction to Heat Transfer
, 4th ed.,
Wiley
,
New York
.
29.
Yeung
,
K. S.
, and
Thornton
,
P. H.
, 1999, “
Transient Thermal Analysis of Spot Welding Electrodes
,”
Weld J.
,
78
(
1
), pp.
1s
6s
.
30.
Autorenkollektiv
der IMPAC Electronic GmbH,
The Pyrometer Handbook
,
IMPAC Electronic GmbH
,
Frankfurt, Germany
.
31.
Safdar
,
S.
,
Li
,
L.
, and
Schmidt
,
J. J.
, 2004, “
Modelling the Effects of Laser Beam Geometry on Laser Surface Heating of Metallic Materials
,”
Proceedings of the Laser Materials Processing Conference ICALEO'04
, Oct., San Francisco, CA.
32.
Smith
,
Y. E.
,
Gupta
,
B. K.
,
Kopietz
,
K. H.
,
Lazarev
,
I.
,
Leeper
,
W. A.
,
Milano
,
N. P.
,
Meszaros
,
A.
, and
Mueller
,
E. R.
, 1981,
Metals Handbook
, 9th ed.,
ASM
,
Metals Park, OH
, Vol.
4
, pp.
32
35
.
33.
Hegge
,
H. J.
, and
De Hosson
,
J. T. M.
, 1987, “
The Relationship between Hardness and Laser Treatment of Hpyo-Eutectoid Steels
,”
Scr. Metall.
0036-9748,
21
, pp.
1737
1742
.
You do not currently have access to this content.