A numerical model is developed to simulate the short-circuiting metal transfer process during gas metal arc welding (GMAW). The energy equation and the Marangoni convection are considered for the first time in analyzing the short-circuiting time. A front-tracking free surface method explicity tracks the profile of the liquid bridge. The electromagnetic field, distribution of velocity, pressure, and temperature are calculated using the developed model. Effects of welding current, surface tension temperature coefficient, and initial drop volume on short-circuiting duration time are examined. The results show that both the electromagnetic force and Marangoni shear stress play significant roles in short-circuiting transfer welding.

1.
Maruo
,
H.
,
Hirata
,
Y.
, and
Goto
,
N.
, 1992, “
Bridging Transfer Phenomena of Conductive Pendent Drop
,”
Trans. Jpn. Weld. Soc.
0385-9282,
10
, pp.
43
50
.
2.
Hirata
,
Y.
,
Osamura
,
T.
,
Goto
,
N.
, and
Ohji
,
T.
, 1993, “
Numerical Model of Short-Circuiting Transfer Process in GMA Welding
,” in
Proceedings of the 7th International Conference on Computer Technology in Welding, NIST, Washington, D.C.
, pp.
279
287
.
3.
Choi
,
S. K.
,
Ko
,
S. H.
,
Yoo
,
C. D.
, and
Kim
,
Y. S.
, 1998, “
Dynamics Simulation of Metal Transfer in GMAW-Part 2: Short-Circuiting Transfer Mode
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
77
, pp.
45
51
.
4.
Choi
,
J. H.
,
Lee
,
J. Y.
, and
Yoo
,
C. D.
, 2001, “
Simulation of Dynamic Behavior in a GMAW System
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
80
, pp.
239
245
.
5.
Wang
,
F.
, 2003, “
Simulation of Metal Transfer and Weld Pool Development in Gas Metal Arc Welding of Thin Sheet Metals
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
6.
Xu
,
G.
,
Schultz
,
W. W.
,
Kannatey-Asibu
Jr.,
E.
,
Hu
,
S. J.
, and
Wang
,
P. C.
, 2004, “
Modeling of Metal Transfer in Short Circuiting Arc Welding
,” in
Proceedings of the ASME International Mechanical Engineering Congress and RD & D Exposition, IMECE2004-59147, Anaheim, CA
.
7.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-dependent Viscous Incompressible Flow of Fluid with Free Surface
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2189
.
8.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
9.
Ashgriz
,
N.
, and
Poo
,
J. Y.
, 1991, “
FLAIR: Flux Line-Segment Model for Advection and Interface Reconstruction
,”
J. Comput. Phys.
0021-9991,
93
, pp.
449
468
.
10.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
11.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
, 1992, “
A Front-Tracking Method for Viscous, Incompressible, Multi-fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
, pp.
25
37
.
12.
Kou
,
S.
, and
Sun
,
D. K.
, 1988, “
Fluid Flow and Weld Penetration in Stationary Arc Welds
,”
Metall. Trans. A
0360-2133,
16
, pp.
203
213
.
13.
Choo
,
R. T. C.
, and
Szekely
,
J.
, 1991, “
The Effect of Gas Shear Stress on Marangoni Flows in Arc Welding
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
70
, pp.
223
232
.
14.
Jackson
,
J. D.
, 1962,
Classical Electrodynamics
,
Wiley
, New York, Chap. 10, pp.
309
311
.
15.
Kim
,
I. S.
, and
Basu
,
A.
, 1998, “
A Mathematical Model of Heat Transfer and Fluid Flow in Gas Metal Arc Welding Process
,”
J. Mater. Process. Manuf. Sci.
1062-0656,
77
, pp.
17
24
.
16.
Peskin
,
C. S.
, 1977, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
0021-9991,
25
, pp.
220
252
.
17.
Wang
,
Y.
, and
Tsai
,
H. L.
, 2001, “
Impingement of Filler Droplets and Weld Pool Dynamics during Gas Metal Arc Welding Process
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2067
2080
.
19.
Sahoo
,
P.
,
DeBroy
,
T.
, and
Manallan
,
M. J.
, 1988, “
Surface Tension of Binary Metal-surface Active Solute Systems under Conditions Relevant to Welding Metallurgy
,”
Metall. Trans. B
0360-2141,
19
, pp.
483
491
.
You do not currently have access to this content.