This paper examines the surface generation process in the micro-endmilling of both single-phase and multiphase workpiece materials. We used 508 μm dia endmills with edge radii of 2 and 5 μm to machine slots in ferrite, pearlite, and two ductile iron materials at feed rates ranging from 0.25 to 3.0 μm/flute. A surface generation model to predict the surface roughness for the slot floor centerline is then developed based on the minimum chip thickness concept. The minimum chip thickness values were found through finite element simulations for the ferrite and pearlite materials. The model is shown to accurately predict the surface roughness for single-phase materials, viz., ferrite and pearlite. Two phenomena were found to combine to generate an optimal feed rate for the surface generation of single-phase materials: (i) the geometric effect of the tool and process geometry and (ii) the minimum chip thickness effect. The surface roughness measurements for the ductile iron workpieces indicate that the micromilling surface generation process for multiphase workpiece materials is also affected by the interrupted chip-formation process as the cutting edge moves between phases resulting in burrs at the phase boundaries and the associated increases in surface roughness.

1.
Kovacs, G. T. A., 1998, Micromachined Transducers Sourcebook, McGraw-Hill, Boston.
2.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I.
,
1982
, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
,
104
, pp.
272
278
.
3.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1986
, “
An Improved Method for the Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
,
108
, pp.
269
279
.
4.
Babin, T. S. and Slutherland, J. W., 1986, “On the Geometry of End Milled Surfaces,” Proc. 14th NAMRC, pp. 168–176.
5.
Melkote
,
S. N.
, and
Thangaraj
,
A. R.
,
1994
, “
An Enhanced End Milling Surface Texture Model Including the Effects of Radial Rake and Primary Relief Angles
,”
ASME J. Eng. Ind.
,
116
, pp.
166
174
.
6.
Sabberwal
,
A. J. P.
,
1961
, “
Chip Section and Cutting Force During the Milling Operation
,”
CIRP Ann.
,
10
, pp.
197
203
.
7.
Tlusty
,
J.
, and
MacNeil
,
P.
,
1975
, “
Dynamics of Cutting Forces in End Milling
,”
CIRP Ann.
,
24
, pp.
21
25
.
8.
DeVor, R. E., Kline, W. A., and Zdeblick, W. J., 1980, “A Mechanistic Model for the Force System in End Milling With Application to Machining Airframe Structures,” Proc. 8th NAMRC, pp. 297–303.
9.
Armarego
,
E. J. A.
, and
Deshpande
,
N. P.
,
1991
, “
Computerized End-Milling Force Predictions With Cutting Models Allowing for Eccentricity and Cutter Deflections
,”
CIRP Ann.
,
40
, pp.
25
29
.
10.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
216
224
.
11.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
,
Ohmuri
,
G.
,
Uchikoshi
,
J.
, and
Yoshinaga
,
H.
,
1993
, “
Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation
,”
CIRP Ann.
,
42
, pp.
91
94
.
12.
Kim
,
C.-J.
,
Bono
,
M.
, and
Ni
,
J.
,
2002
, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. NAMRI/SME
,
XXX
, pp.
247
254
.
13.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
, pp.
327
330
.
14.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschler
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
,
50
, pp.
61
64
.
15.
Lucca
,
D. A.
, and
Seo
,
Y. W.
,
1993
, “
Effect of Tool Edge Geometry on Energy Dissipation in Ultra-Precision Machining
,”
CIRP Ann.
,
42
, pp.
83
86
.
16.
Lucca
,
D. A.
,
Rhorer
,
R. L.
, and
Komanduri
,
R.
,
1991
, “
Energy Dissipation in the Ultraprecision Machining of Copper
,”
CIRP Ann.
,
40
, pp.
69
72
.
17.
Lucca
,
D. A.
,
Seo
,
Y. W.
, and
Rhorer
,
R. L.
,
1994
, “
Energy Dissipation and Tool-Workpiece Contact in Ultra-Precision Machining
,”
Tribol. Trans.
,
37
(
3
), pp.
651
655
.
18.
Lee
,
K.
, and
Dornfeld
,
D. A.
,
2002
, “
An Experimental Study on Burr Formation in Micro Milling Aluminum and Copper
,”
Trans. NAMRI/SME
,
XXX
, pp.
255
262
.
19.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
202
209
.
20.
Spath, D., and Huntrup, V., 1999, “Micro-Milling of Steel for Mold Manufacturing—Influences of Material, Tools and Process Parameters,” Proc. 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology, pp. 203–206.
21.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Bammann
,
D. J.
,
2002
, “
Microstructure-Level Modeling of Ductile Iron Machining
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
162
169
.
22.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
,
Beaudoin
,
A. J.
, and
Bammann
,
D. J.
,
2003
, “
Machining Simulation of Ductile Iron and Its Constituents. Part I: Estimation of Material Model Parameters and Their Validation
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
181
191
.
23.
Chuzhoy
,
L.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Machining Simulation of Ductile Iron and Its Constituents., Part 2: Numerical Simulation and Experimental Validation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
192
201
.
24.
Schimmel
,
R. J.
,
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
2000
, “
Edge Radius Variability and Force Measurement Considerations
,”
ASME J. Manuf. Sci. Eng.
,
122
, pp.
590
593
.
25.
Vogler
,
M. P.
,
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2002
, “
Development of Meso-Scale Machine Tool (mMT) Systems
,”
Trans. NAMRI/SME
,
XXX
, pp.
653
662
.
26.
Vogler, M. P., Liu, X., DeVor, R. E., Kapoor, S. G., Subrahmanian, R., Sung, H., and Ehmann, K. F., 2002, “Miniaturized Machine Tools for CNC-Based Micro/Meso-Scale Machining of 3D Features,” Proc. 3rd International Workshop on Microfactories, Minneapolis, MN, pp. 45–48.
27.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci Eng.
,
126
(
4
), pp.
695
705
.
28.
DeVor, R. E., Chang, T.-H., and Sutherland, J. W., 1992, Statistical Quality Design and Control—Contemporary Concepts and Methods, Prentice-Hall, Englewood Cliffs, NJ.
29.
Bammann
,
D. J.
, and
Johnson
,
G. C.
,
1987
, “
On the Kinematics of Finite-Deformation Plasticity
,”
Acta Mech.
,
70
, pp.
1
13
.
30.
Chuzhoy, L., 2001, “Microstructure-Level Machining Modeling of Ferrous Materials,” PhD thesis, University of Illinois.
You do not currently have access to this content.