Research in automating the process level of machining operations has been conducted, in both academia and industry, over the past few decades. This work is motivated by a strong belief that research in this area will provide increased productivity, improved part quality, reduced costs, and relaxed machine design constraints. The basis for this belief is two-fold. First, machining process automation can be applied to both large batch production environments and small batch jobs. Second, process automation can autonomously tune machine parameters (feed, speed, depth of cut, etc.) on-line and off-line to substantially increase the machine tool’s performance in terms of part tolerances and surface finish, operation cycle time, etc. Process automation holds the promise of bridging the gap between product design and process planning, while reaching beyond the capability of a human operator. The success of manufacturing process automation hinges primarily on the effectiveness of the process monitoring and control systems. This paper discusses the evolution of machining process monitoring and control technologies and conducts an in-depth review of the state-of-the-art of these technologies over the past decade. The research in each area is highlighted with experimental and simulation examples. Open architecture software platforms that provide the means to implement process monitoring and control systems are also reviewed. The impact, industrial realization, and future trends of machining process monitoring and control technologies are also discussed.

1.
Gomes de Oliveira
,
J. F.
, and
Dornfeld
,
D. A.
,
2001
, “
Application of AE Contact Sensing in Reliable Grinding Monitoring
,”
CIRP Ann.
,
50
, pp.
217
220
.
2.
Kiran
,
M.
,
Ramamoorthy
,
B.
, and
Radhakrishnan
,
V.
,
1998
, “
Evaluation of Surface Roughness by Vision System
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
685
690
.
3.
Shunsheruddin, A., and Kim, S. W., 1985, “Adaptive Control of the Cylindrical Plunge Grinding Process,” Proceedings of Symposium on Grinding, ASME Winter Annual Meeting, pp. 373–387.
4.
Jang
,
D. Y.
,
Choi
,
Y. G.
,
Kim
,
H. G.
, and
Hsiao
,
A.
,
1996
, “
Study of the Correlation Between Surface Roughness and Cutting Vibrations to Develop an On-Line Roughness Measuring Technique in Hard Turning
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
553
464
.
5.
Nowicki
,
B.
, and
Jarkiewicz
,
A.
,
1998
, “
The In-Process Surface Roughness Measurement Using Fringe Capacitive (FFC) Method
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
725
732
.
6.
Tsai
,
Y. H.
,
Chen
,
J. C.
, and
Lou
,
S. J.
,
1999
, “
An In-Process Surface Recognition System Based on Neural Networks in End Milling Cutting Operation
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
583
605
.
7.
Azouzi
,
R.
, and
Guillot
,
M.
,
1997
, “
On-Line Prediction of Surface Finish and Dimensional Deviation in Turning Using Neural Network Based Sensor Fusion
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
1201
1217
.
8.
Inasaki
,
I.
,
Tonshoff
,
H. K.
, and
Howes
,
T. D.
,
1993
, “
Abrasive Machining in the Future
,”
CIRP Ann.
,
42
, pp.
723
732
.
9.
To¨nshoff, H. K., Mandrysch, T., Friemuth, T., 1999, “Micromagnetic In-Process Surface Integrity Analysis of Ground Workpieces,” SME Technical Paper, Paper No. MR99–254.
10.
Malkin, S., 1984, “In-Process Control of Thermal Damage During Grinding,” SME Technical Paper, Paper No. MR84–532.
11.
Longanbach
,
D. M.
, and
Kurfess
,
T. R.
,
1998
, “
Real-Time Measurement for an Internal Grinding System
,”
Transactions of NAMRI/SME
,
26
, pp.
317
322
.
12.
Longanbach, D. M., and Kurfess, T. R., 2000, “In-Process Gage Frequency Response Measurement,” Proceedings of the 7th Mechatronics Forum International Conference, Atlanta, Georgia, Paper No. M2000-140.
13.
Jeon
,
J. U.
, and
Kim
,
S. W.
,
1998
, “
Optical Flank Wear Monitoring of Cutting Tools by Image Processing
,”
Wear
,
127
, pp.
207
217
.
14.
Pedersen
,
K. B.
,
1990
, “
Wear Measurement of Cutting Tools by Computer Vision
,”
Int. J. Mach. Tools and Manuf.
,
30
, pp.
131
139
.
15.
Giusti
,
F.
,
Santochi
,
M.
, and
Tantussi
,
G.
,
1987
, “
On Line Sensing of Flank and Crater Wear of Cutting Tools
,”
CIRP Ann.
,
36
, pp.
41
44
.
16.
Du, R., Zhang, B., Hungerford, W., and Pryor, T., 1993, “Tool Conditioning Monitoring and Compensation in Finish Turning Using Optical Sensor,” Proceedings of Symposium on Mechatronics, ASME Winter Annual Meeting, pp. 245–251.
17.
Karthik
,
A.
,
Chandra
,
S.
,
Ramamoorthy
,
B.
, and
Das
,
S.
,
1997
, “
3D Tool Wear Measurement and Visualisation Using Stereo Imaging
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
1573
1581
.
18.
Gould
,
L.
,
1998
, “
Sensing Tool and Drive Element Condition in Machine Tools
,”
Sensors
,
pp.
5
13
.
19.
Lister, P. M., 1993, “On Line Measure of Tool Wear,” Ph.D. thesis, Manufacturing and Machine Tools Division, Department of Mechanical Engineering, UMIST, Manchester, United Kingdom.
20.
Oraby
,
S. E.
, and
Hayhurst
,
D. R.
,
1991
, “
Development of Models for Tool Wear Force Relationship in Metal Cutting
,”
Int. J. Mach. Tools Manuf.
,
33
, pp.
125
138
.
21.
Yao
,
Y.
,
Fang
,
X. D.
, and
Arndt
,
G.
,
1990
, “
Comprehensive Tool Wear Estimation in Finish-Machining Via Multivariate Time-Series Analysis of 3-D Cutting Forces
,”
CIRP Ann.
,
39
, pp.
57
60
.
22.
Bayramoglu
,
M.
, and
Dungel
,
U.
,
1998
, “
A Systematic Investigation on the Use of Forces Ratios in Tool Condition Monitoring for Turning Operations
,”
Trans. Inst. Meas. Control (London)
,
20
, pp.
92
97
.
23.
Blum
,
T.
, and
Inasaki
,
I.
,
1990
, “
A Study of Acoustic Emission from Orthogonal Cutting Process
,”
ASME J. Eng. Ind.
,
112
, pp.
203
211
.
24.
Moriwaki
,
T.
, and
Tobito
,
M.
,
1990
, “
A New Approach to Automatic Detection of Life of Coated Tool Based on Acoustic Emission Measurement
,”
ASME J. Eng. Ind.
,
112
, pp.
212
218
.
25.
Liang
,
S. Y.
, and
Dornfeld
,
D. A.
,
1989
, “
Detection of Cutting Tool Wear Using Time Series Modeling of Acoustic Emission Signals
,”
ASME J. Eng. Ind.
,
111
, pp.
199
205
.
26.
Kakade
,
S.
,
Vijayaraghavan
,
L.
, and
Krishnamurthy
,
R.
,
1994
, “
In Process Tool Wear and Chiping Monitoring in Face Milling Operation Using Acoustic Emission
,”
J. Mater. Process. Technol.
,
44
, pp.
207
214
.
27.
O’Donnell
,
G.
,
Young
,
P.
,
Kelly
,
K.
, and
Byrne
,
G.
,
2001
, “
Towards the Improvement of Tool Condition Monitoring Systems in Manufacturing Environment
,”
J. Mater. Process. Technol.
,
119
, pp.
133
139
.
28.
Moshref, S. B., 1980, “Cutting Temperature as and Approach to On-Line Measurement of Tool Wear,” SME Technical Paper, Paper No. IQ80–304.
29.
Choudhury
,
S. K.
, and
Bartarya
,
G.
,
2003
, “
Role of Temperature and Surface Finish in Prediction Tool Wear Using Neural Network and Design of Experiments
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
747
753
.
30.
De´rrico
,
G. E.
,
1997
, “
A Systems Theory Approach to Modeling of Cutting Temperature with Experimental Identification
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
149
158
.
31.
Lin
,
J.
,
1995
, “
Inverse Estimation of the Tool-Work Interface Temperature in End Milling
,”
Int. J. Mach. Tools Manuf.
,
35
, pp.
751
760
.
32.
Lima, F. R., Guts, S., Machado, A. R., and Guimaraes, G., 1999, “Numerical and Experimental Simulation for Cutting Temperature Estimation using Three-Dimensional Inverse Heat Conduction Technique,” 3rd Conference on Inverse Problems in Engineering, Port Ludlow, WA, USA, Paper No. HT03.
33.
Delio
,
T.
,
Tlusty
,
J.
, and
Smith
,
S.
,
1992
, “
Use of Audio Signals for Chatter Detection and Control
,”
ASME J. Eng. Ind.
,
114
, pp.
146
157
.
34.
Altintas
,
Y.
, and
Chan
,
P. K.
,
1992
, “
In-Process Detection and Suppression of Chatter in Milling
,”
Int. J. Mach. Tools Manuf.
,
32
, pp.
329
347
.
35.
Tarng
,
Y. S.
, and
Li
,
T. C.
,
1994
, “
Detection and Suppression of Drilling Chatter
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
729
734
.
36.
Bailey, T., Ruget, Y., Spence, A., and Elbestawi, M. A., 1995, “Open-architecture Controller for Die and Mold Machining,” American Control Conference, Seattle, Washington, pp. 194–199.
37.
Landers, R. G., 1997, “Supervisory Machining Control: A Design Approach Plus Force Control and Chatter Analysis Components,” Ph.D. thesis, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor.
38.
Lezanky
,
P.
, and
Rafalowicz
,
J.
,
1993
, “
An Intelligent Monitoring System for Cylindrical Grinding
,”
CIRP Ann.
,
42
, pp.
393
396
.
39.
Bahr
,
B.
,
Motavalli
,
S.
, and
Arfi
,
T.
,
1997
, “
Sensor Fusion for Monitoring Machine Tool Conditions
,”
International Journal Computer Integrated Manufacturing
,
10
, pp.
314
323
.
40.
Lou, K-N., and Lin, C-J., 1996, “An Intelligent Sensor Fusion System for Tool Monitoring on a Machining Center,” Proceeding of the 1996 IEEE/SICE/RSJ, International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 208–214.
41.
Kim
,
J-D.
, and
Choi
,
I-H.
,
1996
, “
Development of a Tool Failure Detection System Using Multi-Sensors
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
861
870
.
42.
Ertekin
,
Y. M.
,
Kown
,
Y.
, and
Tseng
,
T-L.
,
2003
, “
Identification of Common Sensory Features for the Control of CNC Milling Operations under Varying Cutting Conditions
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
897
904
.
43.
Lindsay
,
R. P.
,
1983
, “
The Effect of Wheel Wear Rate on the Grinding Performance of Three Wheel Grades
,”
CIRP Ann.
,
32
(
1
), pp.
247
249
.
44.
Hecker, R. L., and Liang, S. Y., 2000, “Power Feedback Control in Cylindrical Grinding Process,” ASME International Mechanical Engineering Congress and Exhibition, Orlando, Florida, DSC 69(2), pp. 713–718.
45.
Hekman, K. A., Hecker, R. L., and Liang, S. Y., 2001, “Adaptive Power Control of Cylindrical Traverse Grinding,” 3rd International Conference on Metal Cutting and High Speed Machining, Metz, France, II, pp. 262–264.
46.
Tomizuka, M., Oh, J. H., and Dornfeld, D. A., 1983, “Model Reference Adaptive Control of the Milling Process,” ASME Winter Annual Meeting, Boston, Massachusetts, pp. 55–63.
47.
Masory
,
O.
, and
Koren
,
Y.
,
1983
, “
Variable Gain Adaptive Control System for Turning
,”
Journal of Manufacturing Systems
, ,
2
, pp.
165
173
.
48.
Altintas
,
Y.
,
1994
, “
Direct Adaptive Control of End Milling Process
,”
Int. J. Mach. Tools Manuf.
,
34
, pp.
461
472
.
49.
Ardekani
,
R.
, and
Yellowley
,
I.
,
1996
, “
The Control of Multiple Constraints Within an Open Architecture Machine Tool Controller
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
388
393
.
50.
Centner, R., 1964, “Final Report on Development of Adaptive Control Technique for Numerically Controlled Milling Machining,” USAF Technical Documentary Report, ML-TDR-64-279.
51.
Amatay
,
G.
,
Malkin
,
S.
, and
Koren
,
Y.
,
1981
, “
Adaptive Control Optimization of Grinding
,”
ASME J. Eng. Ind.
,
103
, pp.
103
108
.
52.
Koren
,
Y.
,
1989
, “
The Optimal Locus Approach with Machining Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
260
267
.
53.
Ivester
,
R.
,
Danai
,
K.
, and
Malkin
,
S.
,
1997
, “
Cycle-Time Reduction in Machining by Recursive Constraint Bounding
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
201
207
.
54.
Hekman
,
K. A.
, and
Liang
,
S. Y.
,
1999
, “
Feedrate Optimization and Depth of Cut Control for Productivity and Part Parallelism in Grinding
,”
International Journal of Mechatronics
,
9
, pp.
447
462
.
55.
Li
,
Y.
,
Rowe
,
W. B.
,
Chen
,
X.
, and
Mills
,
B.
,
1999
, “
Study and Selection of Grinding Conditions. Part 1: A Hybrid Intelligent System for Selection of Grinding Conditions
,”
Proc. Inst. Mech. Eng.
,
213
, pp.
131
142
.
56.
Lundholm
,
T.
,
1991
, “
A Flexible Real-Time Adaptive Control System for Turning
,”
CIRP Ann.
,
41
, pp.
441
444
.
57.
Koren
,
Y.
,
1989
, “
Adaptive Control Systems for Machining
,”
Manuf. Rev.
,
2
, pp.
6
15
.
58.
Coker
,
S. A.
, and
Shin
,
Y. C.
,
1996
, “
In-Process Control of Surface Roughness due to Tool Wear Using a New Ultrasonic System
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
411
422
.
59.
Ulsoy
,
A. G.
,
Koren
,
Y.
, and
Rasmussen
,
F.
,
1983
, “
Principle Developments in the Adaptive Control of Machine Tools
,”
ASME J. Dyn. Syst., Meas., Control
,
105
, pp.
107
112
.
60.
Lauderbaugh
,
L. K.
, and
Ulsoy
,
A. G.
,
1989
, “
Model Reference Adaptive Force Control in Milling
,”
ASME J. Eng. Ind.
,
111
, pp.
13
21
.
61.
Elbestawi
,
M. A.
,
Mohamed
,
Y.
, and
Liu
,
L.
,
1990
, “
Application of Some Parameter Adaptive Control Algorithms in Machining
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
611
617
.
62.
Rober
,
S. J.
, and
Shin
,
Y. C.
,
1996
, “
Control of Cutting Force for End Milling Processes Using and Extended Model Reference Adaptive Control Scheme
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
339
347
.
63.
Liu
,
Y.
,
Cheng
,
T.
, and
Zuo
,
L.
,
2001
, “
Adaptive Control Constraint of Machining Processes
,”
International Journal of Advanced Manufacturing Technology
,
17
, pp.
720
726
.
64.
Harder, L., 1995, “Cutting Force Control in Turning-Solutions and Possibilities,” Ph.D. thesis, Department of Materials Processing, Royal Institute of Technology, Stockholm.
65.
Landers, R. G., and Ulsoy, A. G., 1996, “Machining Force Control Including Static, Nonlinear Effects,” Japan USA Symposium on Flexible Automation, Boston, Massachusetts, pp. 983–990.
66.
Elbestawi
,
M. A.
, and
Sagherian
,
R.
,
1987
, “
Parameter Adaptive Control in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
27
, pp.
399
414
.
67.
Elbestawi
,
M. A.
,
Liu
,
L.
, and
Sinha
,
N. K.
,
1991
, “
Some Advanced Control Strategies for Modern Machine Tools
,”
Comput. Ind.
,
16
, pp.
47
57
.
68.
Landers
,
R. G.
, and
Ulsoy
,
A. G.
,
2000
, “
Model-Based Machining Force Control
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
521
527
.
69.
Carrillo
,
F. J.
,
Rotell
,
F.
, and
Zadshakoyan
,
M.
,
1999
, “
Delta Approach Robust Controller for Constant Turning Force Regulation
,”
Control Eng. Pract.
,
7
, pp.
1321
1331
.
70.
Hayes, R. D., Shin, Y. C., and Nwokah, O. D. I., 1993, “Robust Control Design for Milling Processes,” ASME Winter Annual Meeting, DSC 50/PED 63, New Orleans, Louisiana, pp. 119–125.
71.
Punyko
,
A. J.
, and
Bailey
,
F. N.
,
1994
, “
A Delta Transform Approach to Loop Gain-Phase Shaping Design of Robust Digital Control Systems
,”
Int. J. Robust Nonlinear Control
,
4
, pp.
65
86
.
72.
Nordgren, R. E., and Nwokah, O. D. I., 1994, “Parametric and Unstructured Uncertainty Models in Discrete Time Systems,” ASME Winter Annual Meeting, DSC 55(1), Chicago, Illinois, pp. 11–19.
73.
Rober
,
S. J.
,
Shin
,
Y. C.
, and
Nwokah
,
O. D. I.
,
1997
, “
A Digital Robust Controller for Cutting Force Control in the End Milling Process
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
146
152
.
74.
Kim
,
S. I.
,
Landers
,
R. G.
, and
Ulsoy
,
A. G.
,
2003
, “
Robust Machining Force Control with Process Compensation
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
423
430
.
75.
Lee
,
A-C.
, and
Liu
,
C-S.
,
1991
, “
Analysis of Chatter Vibration in the End Milling Process
,”
Int. J. Mach. Tools Manuf.
,
31
, pp.
471
479
.
76.
Minis
,
I.
, and
Yanushevsky
,
R.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
,
115
, pp.
1
8
.
77.
Tsai
,
M. D.
,
Takata
,
S.
,
Inui
,
M.
,
Kimura
,
F.
, and
Sata
,
T.
,
1990
, “
Prediction of Chatter Vibration by Means of a Model-Based Cutting Simulation System
,”
CIRP Ann.
,
39
, pp.
447
450
.
78.
Lee
,
A-C.
, and
Liu
,
C-S.
,
1991
, “
Analysis of Chatter Vibration in a Cutter-Workpiece System
,”
Int. J. Mach. Tools Manuf.
,
31
, pp.
221
234
.
79.
Smith
,
S.
, and
Tlusty
,
J.
,
1993
, “
Efficient Simulation Programs for Chatter in Milling
,”
CIRP Ann.
,
42
, pp.
463
466
.
80.
Weck
,
M.
,
Altintas
,
Y.
, and
Beer
,
C.
,
1994
, “
CAD Assisted Chatter-Free NC Tool Path Generation in Milling
,”
Int. J. Mach. Tools Manuf.
,
34
, pp.
879
891
.
81.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
, pp.
357
362
.
82.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, pp.
22
30
.
83.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, pp.
31
36
.
84.
Shiraishi
,
M.
,
Kume
,
E.
, and
Hoshi
,
T.
,
1988
, “
Suppression of Machine-Tool Chatter by State Feedback Control
,”
CIRP Ann.
,
1
, pp.
369
372
.
85.
Shiraishi
,
M.
,
Yamanaka
,
K.
, and
Fujita
,
H.
,
1991
, “
Optimal Control of Chatter in Turning
,”
Int. J. Mach. Tools Manuf.
,
31
, pp.
31
43
.
86.
Landers, R. G., and Ulsoy, A. G., 1996, “Chatter Analysis of Machining Systems with Nonlinear Force Processes,” ASME International Mechanical Engineering Congress and Exposition, Atlanta, Georgia, DSC 58 pp. 183–190.
87.
Takemura
,
T.
,
Kitamura
,
T.
, and
Hoshi
,
T.
,
1974
, “
Active Suppression of Chatter by Programmed Variation of Spindle Speed
,”
CIRP Ann.
,
23
, pp.
121
122
.
88.
Sexton
,
J. S.
, and
Stone
,
B.
,
1980
, “
An Investigation of the Transient Effects During Variable Speed Cutting
,”
J. Mech. Eng. Sci.
,
22
, pp.
107
118
.
89.
Jemielnaiak
,
K.
, and
Widota
,
A.
,
1984
, “
Suppression of Self-Excited Vibration by the Spindle Speed Variation Method
,”
Int. J. Mach. Tool Des. Res.
,
24
, pp.
207
214
.
90.
Olbrich
,
R. J.
,
Fu
,
H. J.
,
Bray
,
D.
, and
DeVor
,
R. E.
,
1985
, “
Study of Control System with Varying Spindle Speed in Face Milling
,” Transactions of NAMRI/SME, pp. 567–574.
91.
Lin
,
S. C.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1990
, “
The Effects of Variable Speed Cutting on Vibration Control in Face Milling
,”
ASME J. Eng. Ind.
,
112
, pp.
1
11
.
92.
Zhang, H., Ni, J., and Shi, H., 1994, “Machining Chatter Suppression by Means of Spindle Speed Variation-Part I: The Numerical Solution and Part II: Experimental Investigation,” Proceedings of the S.M. Wu Symposium on Manufacturing Science, I, Evanston, Illinois, pp. 161–175.
93.
Radulescu
,
R.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
1997
, “
An Investigation of Variable Spindle Speed Face Milling for Tool-Work Structures with Complex Dynamics, Part 1: Simulation Results and Part 2: Physical Explanation
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
266
280
.
94.
Yang
,
F.
,
Zhang
,
B.
, and
Yu
,
J.
,
1999
, “
Chatter Suppression via an Oscillating Cutter
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
54
60
.
95.
Soliman
,
E.
, and
Ismail
,
F.
,
1998
, “
A Control System for Chatter Avoidance by Ramping the Spindle Speed
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
674
683
.
96.
Altintas, Y., Engin, S., and Budak, E., 1998, “Analytical Stability Prediction and Design of Variable Pitch Cutters,” ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, MED 8 pp. 141–148.
97.
Stein
,
J. M.
, and
Dornfeld
,
D. A.
,
1997
, “
Burr Formation in Drilling Miniature Holes
,”
CIRP Ann.
,
46
, pp.
63
66
.
98.
Kim
,
J.
, and
Dornfeld
,
D. A.
,
2001
, “
Cost Estimation of Drilling Operations by a Drilling Burr Control Chart and Bayesian Statistics
,”
J. Manuf. Sys.
,
20
, pp.
89
97
.
99.
Kim
,
J.
,
Min
,
S.
, and
Dornfeld
,
D. A.
,
2001
, “
Optimization and Control of Drilling Burr Formation of AISI 304L and AISI 4118 Based on Drilling Burr Control Charts
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
923
936
.
100.
Furness
,
R. J.
,
Ulsoy
,
A. G.
, and
Wu
,
C. L.
,
1996
, “
Supervisory Control of Drilling
,”
ASME J. Eng. Ind.
,
118
, pp.
10
19
.
101.
Ralston
,
R. A. S.
,
Stoll
,
K. E.
, and
Ward
,
T. L.
,
1992
, “
Fuzzy Logic Control of Chip Form During Turning
,”
Computers and Industrial Engineering
,
22
, pp.
223
230
.
102.
Jawahir
,
I. S.
, and
van Luttervelt
,
C. A.
,
1993
, “
Recent Developments in Chip Control Research and Applications
,”
CIRP Ann.
,
42
, pp.
659
693
.
103.
De´rrico, G. E., Calzavarini, R., and Settineri, L., 1994, “Experiments of Self-Tuning Regulation of Cutting Temperature in Turning Process,” IEEE Conference on Control Applications, Glasgow, United Kingdom, 2 pp. 1165–1169.
104.
Choudhury
,
S. K.
, and
Ramesh
,
S.
,
1995
, “
On-Line Tool Wear Sensing and Compensation in Turning
,”
J. Mater. Process. Technol.
,
49
, pp.
247
254
.
105.
Warnecke
,
G.
, and
Kluge
,
R.
,
1998
, “
Control of Tolerances in Turning by Predictive Control with Neural Networks
,”
Journal of Intelligent Manufacturing
,
9
, pp.
281
287
.
106.
Fraticelli
,
B. M. P.
,
Lehtihet
,
E. A.
, and
Cavalier
,
T. M.
,
1999
, “
Tool-Wear Effect Compensation under Sequential Tolerance Control
,”
Int. J. Prod. Res.
,
37
, pp.
639
651
.
107.
Teltz
,
R.
, and
Elbestawi
,
M. A.
,
1993
, “
Hierarchical, Knowledge-Based Control in Turning
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
122
132
.
108.
Ramamurthi
,
K.
, and
Hough
,
C. L.
,
1993
, “
Intelligent Real-Time Predictive Diagnostics for Cutting Tools and Supervisory Control of Machining Operations
,”
ASME J. Eng. Ind.
,
115
, pp.
268
277
.
109.
Landers
,
R. G.
, and
Ulsoy
,
A. G.
,
1998
, “
Supervisory Machining Control: Design Approach and Experiments
,”
CIRP Ann.
,
47
, pp.
301
306
.
110.
Katz
,
Z.
, and van
van Niekerk
,
T.
,
2003
, “
Implementation Aspects of Intelligent Machining
,”
Proc. Inst. Mech. Eng.
,
217
, pp.
601
613
.
111.
Dasgupta, A., Pandurangan, B., Landers, R. G., and Balakrishnan, S. N., 2003, “Hierarchical Optimal Control of a Turning Process-Linearization Approach,” American Control Conference, Denver, Colorado, pp. 2606–2613.
112.
Sudhakara, R., and Landers, R. G., 2003, “Output Feedback Force Control for a Parallel Turning Operation,” American Control Conference, Denver, Colorado, pp. 2596–2601.
113.
Landers
,
R. G.
,
Min
,
B.-K.
, and
Koren
,
Y.
,
2001
, “
Reconfigurable Machine Tools
,”
CIRP Ann.
,
50
, pp.
269
274
.
114.
Ulsoy
,
A. G.
, and
Koren
,
Y.
,
1993
, “
Control of Machining Processes
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
301
308
.
115.
Jeppsson, J., 1988, “Adaptive Control of Milling Machines,” Advanced Machining Technology II, SME Technical Paper MS88–103, Phoenix, Arizona.
116.
Pritschow
,
G.
,
Altinas
,
Y.
,
Jovane
,
F.
,
Koren
,
Y.
,
Mitsuishi
,
M.
,
Takata
,
S.
,
Van Brussel
,
H.
,
Weck
,
M.
, and
Yamazaki
,
K.
,
2001
, “
Open Controller Architecture-Past, Present and Future
,”
CIRP Ann.
,
50
, pp.
463
470
.
117.
Anderson
,
B. M.
,
Cole
,
J. R.
, and
Holland
,
R. G.
,
1993
, “
An Open Standard for Industrial Controllers
,”
Manuf. Rev.
,
6
, pp.
180
191
.
118.
Schofield
,
S.
, and
Wright
,
P.
,
1998
, “
Open Architecture Controllers for Machine Tools, Part 1: Design Principles
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
417
424
.
119.
Wright
,
P. K.
, and
Dornfel
,
D. A.
,
1996
, “
Agent-Based Manufacturing Systems
,”
Transactions of NAMRI/SME
,
24
, pp.
241
246
.
120.
Park, J., Pasek, Z. J., Birla, S., Yansong, S., Koren, Y., Shin, K. G., and Ulsoy, A. G., 1995, “An Open Architecture Testbed for Real-Time Monitoring and Control of Machining Processes,” American Control Conference, Seattle, Washington, pp. 200–204.
121.
Rober
,
S. J.
, and
Shin
,
Y. C.
,
1995
, “
Modeling and Control of CNC Machining Using a PC-Based Open Architecture Controller
,”
Mechatronics
,
5
, pp.
401
420
.
122.
Altintas
,
Y.
, and
Munasingh
,
W. K.
,
1996
, “
Modular CNC Design for Intelligent Machining, Part 2-Modular Integration of Sensor Based Milling Process Monitoring and Control Tasks
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
514
521
.
123.
Koren
,
Y.
,
Pasek
,
Z. J.
,
Ulso
,
A. G.
, and
Benchetri
,
U.
,
1996
, “
Real-Time Control Architectures for System Performance
,”
CIRP Ann.
,
45
, pp.
377
380
.
124.
Yellowley
,
I.
, and
Pottier
,
P. R.
,
1994
, “
The Integration of Process and Geometry Within an Open Architecture Machine Tool Controller
,”
Int. J. Mach. Tools Manuf.
,
34
, pp.
277
293
.
125.
Wright, P. K., Pavlakos, E., and Hansen, F., 1991, “Controlling the Physics of Machining on an Open-Architecture Manufacturing System,” ASME Winter Annual Meeting, Atlanta, Georgia, pp. 129–144.
126.
Pritschow
,
G.
,
1990
, “
Automation Technology-On the Way to an Open System Architecture
,”
Rob. Comput.-Integr. Manufact.
,
7
, pp.
103
111
.
You do not currently have access to this content.