Abstract

In order to establish a high-fidelity mechanism model for investigating the molten pool behaviors during directed energy deposition (DED) process, a molten pool dynamics model combined with the discrete element method is developed in the present study. The proposed model contains several newly added particle sources to further intuitively reproduce the interaction between the discrete powder particles and the molten pool. Meanwhile, the effects of the nozzle structure, carrier gas, and shielding gas on the feedstock feeding process are simulated in detail using the gas-powder flow model based on the multi-phase flow theory. The gas-powder flow model is used to provide the reasonable outlet velocities, focal distance, and radius of the focal point for the particle sources in the molten pool dynamics model, which solves the difficulty that the motion state of the powder streams obtained by the molten pool dynamics simulation is hard to reproduce the actual situation. Besides, relevant experiments are conducted to verify the developed models. The predicted parameters of the powder streams are consistent with the experiment, and the deviations of the predicted molten pool dimensions are less than 10%. The heat and mass transfer phenomena inside the molten pool are also revealed. Furthermore, the maximum size of the spherical pore defects is predicted to be 18.6 µm, which is underestimated by 7% compared to the microscopic observation. Altogether, the numerical methods developed in this study could further augment and improve the samples for the machine learning modeling of DED process.

References

1.
Wei
,
H. L.
,
Mukherjee
,
T.
,
Zhang
,
W.
,
Zuback
,
J. S.
,
Knapp
,
G. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2021
, “
Mechanistic Models for Additive Manufacturing of Metallic Components
,”
Prog. Mater. Sci.
,
116
(
2
), p.
100703
.
2.
Gan
,
Z.
,
Liu
,
H.
,
Li
,
S.
,
He
,
X.
, and
Yu
,
G.
,
2017
, “
Modeling of Thermal Behavior and Mass Transport in Multi-Layer Laser Additive Manufacturing of Ni-Based Alloy on Cast Iron
,”
Int. J. Heat Mass Transf.
,
111
(
8
), pp.
709
722
.
3.
Guan
,
X.
, and
Zhao
,
Y. F.
,
2020
, “
Modeling of the Laser Powder-Based Directed Energy Deposition Process for Additive Manufacturing: A Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5–6
), pp.
1959
1982
.
4.
Ibarra Medina
,
J. R.
,
2013
, “
Development and Application of a CFD Model of Laser Metal Deposition
,”
Ph.D. thesis
,
The University of Manchester
,
Manchester, UK
.
5.
Wei
,
S.
,
Wang
,
G.
,
Shin
,
Y. C.
, and
Rong
,
Y.
,
2018
, “
Comprehensive Modeling of Transport Phenomena in Laser Hot-Wire Deposition Process
,”
Int. J. Heat Mass Transf.
,
125
(
10
), pp.
1356
1368
.
6.
Duan
,
C.
,
Cao
,
X.
, and
Luo
,
X.
,
2021
, “
Efficient Distortion Predictions of High-Performance Steel Alloy Parts Fabricated by Pragmatic Deposition Strategies in Laser Melting Deposition
,”
J. Laser Appl.
,
34
(
1
), p.
12010
.
7.
Cao
,
X.
,
Duan
,
C.
, and
Luo
,
X.
,
2021
, “
Efficient Simulation Methods for Thermal-Mechanical Coupled Analysis and Rapid Residual Distortion Prediction of Laser Melting Deposition Process
,”
Steel Res. Int.
,
92
(
8
), p.
2000615
.
8.
Lee
,
Y. S.
, and
Zhang
,
W.
,
2016
, “
Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
12
(
10
), pp.
178
188
.
9.
Xiao
,
Y.
,
Wan
,
Z.
,
Liu
,
P.
,
Wang
,
Z.
,
Li
,
J.
, and
Chen
,
L.
,
2022
, “
Quantitative Simulations of Grain Nucleation and Growth at Additively Manufactured Bimetallic Interfaces of SS316L and IN625
,”
J. Mater. Process. Technol.
,
302
(
4
), p.
117506
.
10.
Wen
,
S. Y.
,
Shin
,
Y. C.
,
Murthy
,
J. Y.
, and
Sojka
,
P. E.
,
2009
, “
Modeling of Coaxial Powder Flow for the Laser Direct Deposition Process
,”
Int. J. Heat Mass Transf.
,
52
(
25–26
), pp.
5867
5877
.
11.
Gao
,
J.
,
Wu
,
C.
,
Liang
,
X.
,
Hao
,
Y.
, and
Zhao
,
K.
,
2020
, “
Numerical Simulation and Experimental Investigation of the Influence of Process Parameters on Gas-Powder Flow in Laser Metal Deposition
,”
Opt. Laser Technol.
,
125
(
5
), p.
106009
.
12.
Yao
,
X.
,
Li
,
J.
,
Wang
,
Y.
,
Gao
,
X.
,
Li
,
T.
, and
Zhang
,
Z.
,
2021
, “
Experimental and Numerical Studies of Nozzle Effect on Powder Flow Behaviors in Directed Energy Deposition Additive Manufacturing
,”
Int. J. Mech. Sci.
,
210
(
11
), p.
106740
.
13.
Alya
,
S.
, and
Singh
,
R.
,
2021
, “
Discrete Phase Modeling of the Powder Flow Dynamics and the Catchment Efficiency in Laser Directed Energy Deposition With Inclined Coaxial Nozzles
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081004
.
14.
Jiang
,
S.
,
Zheng
,
B.
, and
Schoenung
,
J.
,
2022
, “
Directed Energy Deposition of Metal Matrix Composites: Computational and Experimental Comparison of Powder Particle Flow Behavior
,”
J. Mater. Res. Technol.
,
16
(
1–2
), pp.
516
529
.
15.
Chen
,
G.
,
Zhou
,
Q.
,
Zhao
,
S.
,
Yin
,
J.
,
Tan
,
P.
,
Li
,
Z.
,
Ge
,
Y.
,
Wang
,
J.
, and
Tang
,
H.
,
2018
, “
A Pore Morphological Study of Gas-Atomized Ti-6Al-4 V Powders by Scanning Electron Microscopy and Synchrotron X-ray Computed Tomography
,”
Powder Technol.
,
330
(
5
), pp.
425
430
.
16.
Aggarwal
,
A.
,
Chouhan
,
A.
,
Patel
,
S.
,
Yadav
,
D. K.
,
Kumar
,
A.
,
Vinod
,
A. R.
,
Prashanth
,
K. G.
, and
Gurao
,
N. P.
,
2020
, “
Role of Impinging Powder Particles on Melt Pool Hydrodynamics, Thermal Behaviour and Microstructure in Laser-Assisted DED Process: A Particle-Scale DEM–CFD–CA Approach
,”
Int. J. Heat Mass Transf.
,
158
(
9
), p.
119989
.
17.
Haley
,
J.
,
Schoenung
,
J.
, and
Lavernia
,
E.
,
2018
, “
Observations of Particle-Melt Pool Impact Events in Directed Energy Deposition
,”
Addit. Manuf.
,
22
(
8
), pp.
368
374
.
18.
Haley
,
J.
,
Zheng
,
B.
,
Bertoli
,
U.
,
Dupuy
,
A.
,
Schoenung
,
J.
, and
Lavernia
,
E.
,
2019
, “
Working Distance Passive Stability in Laser Directed Energy Deposition Additive Manufacturing
,”
Mater. Des.
,
161
(
1
), pp.
86
94
.
19.
Ma
,
P.
,
Wu
,
Y.
,
Zhang
,
P.
, and
Chen
,
J.
,
2019
, “
Solidification Prediction of Laser Cladding 316L by the Finite Element Simulation
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
957
969
.
20.
Malmelöv
,
A.
,
Lundbäck
,
A.
, and
Lindgren
,
L.-E.
,
2020
, “
History Reduction by Lumping for Time-Efficient Simulation of Additive Manufacturing
,”
Metals
,
10
(
1
), p.
58
.
21.
Chen
,
Q.
,
Liang
,
X.
,
Hayduke
,
D.
,
Liu
,
J.
,
Cheng
,
L.
,
Oskin
,
J.
,
Whitmore
,
R.
, and
To
,
A. C.
,
2019
, “
An Inherent Strain Based Multiscale Modeling Framework for Simulating Part-Scale Residual Deformation for Direct Metal Laser Sintering
,”
Addit. Manuf.
,
28
(
8
), pp.
406
418
.
22.
Liang
,
X.
,
Cheng
,
L.
,
Chen
,
Q.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
A Modified Method for Estimating Inherent Strains From Detailed Process Simulation for Fast Residual Distortion Prediction of Single-Walled Structures Fabricated by Directed Energy Deposition
,”
Addit. Manuf.
,
23
(
10
), pp.
471
486
.
23.
Pant
,
P.
, and
Chatterjee
,
D.
,
2021
, “
A Multi-Physics Way to Investigate Some Aspects of Melt Pool During Laser Substrate Interaction in Laser Metal Deposition Process
,”
Trans. Indian Inst. Met.
,
74
(
11
), pp.
2843
2852
.
24.
Yang
,
J.
,
Aiyiti
,
W.
,
Jiang
,
H.
,
Shan
,
J.
, and
Zhang
,
Y.
,
2021
, “
Evolution of Molten Pool Morphology and Prediction of Inclined Cladding Layer Morphology
,”
Opt. Laser Technol.
,
142
(
10
), p.
107164
.
25.
Wei
,
H. L.
,
Liu
,
F. Q.
,
Liao
,
W. H.
, and
Liu
,
T. T.
,
2020
, “
Prediction of Spatiotemporal Variations of Deposit Profiles and Inter-Track Voids During Laser Directed Energy Deposition
,”
Addit. Manuf.
,
34
(
8
), p.
101219
.
26.
Wei
,
H. L.
,
Liu
,
F. Q.
,
Wei
,
L.
,
Liu
,
T. T.
, and
Liao
,
W. H.
,
2021
, “
Multiscale and Multiphysics Explorations of the Transient Deposition Processes and Additive Characteristics During Laser 3D Printing
,”
J. Mater. Sci. Technol.
,
77
(
6
), pp.
196
208
.
27.
Li
,
C.
,
Yu
,
Z.
,
Gao
,
J.
,
Zhao
,
J.
, and
Han
,
X.
,
2019
, “
Numerical Simulation and Experimental Study of Cladding Fe60 on an ASTM 1045 Substrate by Laser Cladding
,”
Surf. Coat. Technol.
,
357
(
1
), pp.
965
977
.
28.
Wang
,
S.
,
Zhu
,
L.
,
Fuh
,
J. Y. H.
,
Zhang
,
H.
, and
Yan
,
W.
,
2020
, “
Multi-physics Modeling and Gaussian Process Regression Analysis of Cladding Track Geometry for Direct Energy Deposition
,”
Opt. Lasers Eng.
,
127
(
4
), p.
105950
.
29.
Wolff
,
S.
,
Gan
,
Z.
,
Lin
,
S.
,
Bennett
,
J.
,
Yan
,
W.
,
Hyatt
,
G.
,
Ehmann
,
K.
,
Wagner
,
G.
,
Liu
,
W.
, and
Cao
,
J.
,
2019
, “
Experimentally Validated Predictions of Thermal History and Microhardness in Laser-Deposited Inconel 718 on Carbon Steel
,”
Addit. Manuf.
,
27
(
5
), pp.
540
551
.
30.
Bayat
,
M.
,
Nadimpalli
,
V. K.
,
Biondani
,
F. G.
,
Jafarzadeh
,
S.
,
Thorborg
,
J.
,
Tiedje
,
N. S.
,
Bissacco
,
G.
,
Pedersen
,
D. B.
, and
Hattel
,
J. H.
,
2021
, “
On the Role of the Powder Stream on the Heat and Fluid Flow Conditions During Directed Energy Deposition of Maraging Steel—Multiphysics Modeling and Experimental Validation
,”
Addit. Manuf.
,
43
(
7
), p.
102021
.
31.
Liu
,
B.
,
Fang
,
G.
,
Lei
,
L.
, and
Liu
,
W.
,
2020
, “
A New Ray Tracing Heat Source Model for Mesoscale CFD Simulation of Selective Laser Melting (SLM)
,”
Appl. Math. Model.
,
79
(
3
), pp.
506
520
.
32.
Wang
,
Z.
,
Yan
,
W.
,
Liu
,
W. K.
, and
Liu
,
M.
,
2019
, “
Powder-Scale Multi-physics Modeling of Multi-Layer Multi-Track Selective Laser Melting With Sharp Interface Capturing Method
,”
Comput. Mech.
,
63
(
4
), pp.
649
661
.
33.
Cao
,
L.
, and
Guan
,
W.
,
2021
, “
Simulation and Analysis of LPBF Multi-Layer Single-Track Forming Process Under Different Particle Size Distributions
,”
Int. J. Adv. Manuf. Technol.
,
114
(
7–8
), pp.
2141
2157
.
34.
Chen
,
Z.
,
Xiang
,
Y.
,
Wei
,
Z.
,
Wei
,
P.
,
Lu
,
B.
,
Zhang
,
L.
, and
Du
,
J.
,
2018
, “
Thermal Dynamic Behavior During Selective Laser Melting of K418 Superalloy: Numerical Simulation and Experimental Verification
,”
Appl. Phys. A Mater. Sci. Process.
,
124
(
4
), pp.
1
16
.
35.
ANSYS Inc.
,
2020
,
Fluent User’s Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
36.
Gosman
,
A. D.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fuelled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
37.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.
38.
Manvatkar
,
V.
,
De
,
A.
, and
DebRoy
,
T.
,
2014
, “
Heat Transfer and Material Flow During Laser Assisted Multi-Layer Additive Manufacturing
,”
J. Appl. Phys.
,
116
, p.
124905
.
39.
Wirth
,
F.
,
Eisenbarth
,
D.
, and
Wegener
,
K.
,
2016
, “
Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding
,”
Phys. Procedia.
,
83
, pp.
1424
1434
.
40.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transf.
,
30
(
8
), pp.
1709
1719
.
41.
Le
,
T. N.
, and
Lo
,
Y. L.
,
2019
, “
Effects of Sulfur Concentration and Marangoni Convection on Melt-Pool Formation in Transition Mode of Selective Laser Melting Process
,”
Mater. Des.
,
179
(
10
), p.
107866
.
42.
Zhang
,
Y.
,
Matthews
,
S.
,
Tran
,
A. T. T.
, and
Hyland
,
M.
,
2016
, “
Effects of Interfacial Heat Transfer, Surface Tension and Contact Angle on the Formation of Plasma-Sprayed Droplets Through Simulation Study
,”
Surf. Coat. Technol.
,
307
(
12
), pp.
807
816
.
43.
Ding
,
C.
,
Cui
,
X.
,
Jiao
,
J.
, and
Zhu
,
P.
,
2018
, “
Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique
,”
Materials
,
11
(
12
), p.
2401
.
44.
Egry
,
I.
,
Ricci
,
E.
,
Novakovic
,
R.
, and
Ozawa
,
S.
,
2010
, “
Surface Tension of Liquid Metals and Alloys-Recent Developments
,”
Adv. Colloid Interface Sci.
,
159
(
2
), pp.
198
212
.
45.
Li
,
Y.
,
Zhao
,
Y.
,
Zhou
,
X.
, and
Zhan
,
X.
,
2022
, “
Effect of Droplet Transition on the Dynamic Behavior of the Keyhole During 6061 Aluminum Alloy Laser-MIG Hybrid Welding
,”
Int. J. Adv. Manuf. Technol.
,
119
(
1–2
), pp.
897
909
.
46.
Gao
,
Q.
,
Yan
,
T.
,
Ling
,
W.
,
Bu
,
H.
,
Zhan
,
X.
, and
Shen
,
H.
,
2021
, “
Effect of Vapor/Plasma-Liquid Flow Behavior on the Keyhole Oscillation in Laser-MIG Hybrid Welding of Invar Alloy
,”
Opt. Laser Technol.
,
140
(
8
), p.
107054
.
47.
Biswal
,
R.
,
Syed
,
A. K.
, and
Zhang
,
X.
,
2018
, “
Assessment of the Effect of Isolated Porosity Defects on the Fatigue Performance of Additive Manufactured Titanium Alloy
,”
Addit. Manuf.
,
23
(
10
), pp.
433
442
.
48.
Andreau
,
O.
,
Pessard
,
E.
,
Koutiri
,
I.
,
Peyre
,
P.
, and
Saintier
,
N.
,
2021
, “
Influence of the Position and Size of Various Deterministic Defects on the High Cycle Fatigue Resistance of a 316L Steel Manufactured by Laser Powder Bed Fusion
,”
Int. J. Fatigue
,
143
(
2
), p.
105930
.
49.
Wilson-Heid
,
A. E.
, and
Beese
,
A. M.
,
2021
, “
Combined Effects of Porosity and Stress State on the Failure Behavior of Laser Powder Bed Fusion Stainless Steel 316L
,”
Addit. Manuf.
,
39
(
3
), p.
101862
.
50.
Reddy
,
L.
,
Preston
,
S. P.
,
Shipway
,
P. H.
,
Davis
,
C.
, and
Hussain
,
T.
,
2018
, “
Process Parameter Optimisation of Laser Clad Iron Based Alloy: Predictive Models of Deposition Efficiency, Porosity and Dilution
,”
Surf. Coat. Technol.
,
349
(
9
), pp.
198
207
.
51.
Arrizubieta
,
J.
,
Lamikiz
,
A.
,
Klocke
,
F.
,
Martínez
,
S.
,
Arntz
,
K.
, and
Ukar
,
E.
,
2017
, “
Evaluation of the Relevance of Melt Pool Dynamics in Laser Material Deposition Process Modeling
,”
Int. J. Heat Mass Transf.
,
115
(
12
), pp.
80
91
.
You do not currently have access to this content.