Abstract

In this work, we developed a new additive manufacturing paradigm, coaxial wire–powder-fed directed energy deposition (CWP-DED), to enable the fabrication of metals or composites with high manufacturing flexibility and efficiency. Herein, stainless steel (SS) 316L was selected as a representative material to validate the feasibility of CWP-DED process. Effects of feed rates on the melt pool temperature during the CWP-DED process were investigated using experimental and analytical approaches. Thermal contributions of fed wire and powders to the melt pool were involved in the analytical model to predict the melt pool temperature. The experimental results from thermal imaging were also obtained for validation. Besides, we uncovered the evolution of solidification morphology and crystallographic texture with different combinations of wire and powder feed rates. Finally, the microhardness and tensile performance of different as-built parts were tested. The results showed that the powder feed rate played a more dominant role in determining the melt pool temperature than the wire feed rate. Melt pool temperature experienced an initial increase and then decrease with the powder feed rate. A fine microstructure was achieved at a low powder feed rate, producing higher microhardness and larger tensile strength. This paper revealed the relations among process, thermal variation, and microstructure of as-built metallic parts to well understand this novel DED process.

References

1.
Svetlizky
,
D.
,
Das
,
M.
,
Zheng
,
B.
,
Vyatskikh
,
A. L.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Eliaz
,
N.
,
2021
, “
Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications
,”
Mater. Today
,
49
, pp.
271
295
.
2.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
, pp.
36
62
.
3.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2005
, “
A Comparative Study of Wire Feeding and Powder Feeding in Direct Diode Laser Deposition for Rapid Prototyping
,”
Appl. Surf. Sci.
,
247
(
1–4
), pp.
268
276
.
4.
Blinn
,
B.
,
Lion
,
P.
,
Jordan
,
O.
,
Meiniger
,
S.
,
Mischliwski
,
S.
,
Tepper
,
C.
,
Gläßner
,
C.
,
Aurich
,
J. C.
,
Weigold
,
M.
, and
Beck
,
T.
,
2021
, “
Process-Influenced Fatigue Behavior of AISI 316L Manufactured by Powder-and Wire-Based Laser Direct Energy Deposition
,”
Mater. Sci. Eng. A
,
818
(
22
), pp.
1
10
.
5.
Li
,
Q.
,
Chen
,
J.
,
Wang
,
X.
,
Liu
,
Y.
,
Jiang
,
K.
,
Yang
,
S.
, and
Liu
,
Y.
,
2021
, “
Process, Microstructure and Microhardness of GH3039 Superalloy Processed by Laser Metal Wire Deposition
,”
J. Alloys Compd.
,
877
(
5
), pp.
1
12
.
6.
Chua
,
B. L.
,
Lee
,
H. J.
,
Ahn
,
D. G.
, and
Kim
,
J. G.
,
2018
, “
Investigation of Penetration Depth and Efficiency of Applied Heat Flux in a Directed Energy Deposition Process With Feeding of Ti-6Al-4 V Wires
,”
J. Korean Soc. Precis. Eng.
,
35
(
2
), pp.
211
217
.
7.
Ho
,
A.
,
Zhao
,
H.
,
Fellowes
,
J. W.
,
Martina
,
F.
,
Davis
,
A. E.
, and
Prangnell
,
P. B.
,
2019
, “
On the Origin of Microstructural Banding in Ti-6Al4V Wire-Arc Based High Deposition Rate Additive Manufacturing
,”
Acta Mater.
,
166
, pp.
306
323
.
8.
Wang
,
F.
,
Mei
,
J.
,
Jiang
,
H.
, and
Wu
,
X.
,
2007
, “
Laser Fabrication of Ti6Al4V/TiC Composites Using Simultaneous Powder and Wire Feed
,”
Mater. Sci. Eng. A
,
445
(
15
), pp.
461
466
.
9.
Zhang
,
Y.
,
Wei
,
Z.
,
Shi
,
L.
, and
Xi
,
M.
,
2008
, “
Characterization of Laser Powder Deposited Ti–TiC Composites and Functional Gradient Materials
,”
J. Mater. Process Technol.
,
206
(
1–3
), pp.
438
444
.
10.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2006
, “
Simultaneous Wire-and Powder-Feed Direct Metal Deposition: An Investigation of the Process Characteristics and Comparison With Single-Feed Methods
,”
J. Laser Appl.
,
18
(
1
), pp.
65
72
.
11.
Li
,
F.
,
Gao
,
Z.
,
Li
,
L.
, and
Chen
,
Y.
,
2016
, “
Microstructural Study of MMC Layers Produced by Combining Wire and Coaxial WC Powder Feeding in Laser Direct Metal Deposition
,”
Opt. Laser Technol.
,
77
, pp.
134
143
.
12.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2006
, “
Combining Wire and Coaxial Powder Feeding in Laser Direct Metal Deposition for Rapid Prototyping
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4803
4808
.
13.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
,
Liu
,
Z.
, and
Li
,
L.
,
2007
, “
Coincident Wire and Powder Deposition by Laser to Form Compositionally Graded Material
,”
Surf. Coat. Technol.
,
201
(
16–17
), pp.
7083
7091
.
14.
Wang
,
F.
,
Mei
,
J.
, and
Wu
,
X.
,
2006
, “
Microstructure Study of Direct Laser Fabricated Ti Alloys Using Powder and Wire
,”
Appl. Surf. Sci.
,
253
(
3
), pp.
1424
1430
.
15.
Farayibi
,
P. K.
,
2018
, “
Microstructural Evolution of Metal Matrix Composites Formed by Laser Deposition of Ti-6Al-4 V Wire and WC-W2C Powder
,”
Adv. Eng. Forum
,
26
, pp.
22
32
.
16.
Farayibi
,
P. K.
,
Abioye
,
T. E.
, and
Clare
,
A. T.
,
2016
, “
A Parametric Study on Laser Cladding of Ti-6Al-4 V Wire and WC/W2C Powder
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9
), pp.
3349
3358
.
17.
Li
,
F.
,
Gao
,
Z.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2016
, “
Alloying Effect of Titanium on WCp/Al Composite Fabricated by Coincident Wire-Powder Laser Deposition
,”
Mater. Des.
,
93
(
5
), pp.
370
378
.
18.
De Oliveira
,
U.
,
Ocelík
,
V.
, and
De Hosson
,
J. T. M.
,
2005
, “
Analysis of Coaxial Laser Cladding Processing Conditions
,”
Surf. Coat. Technol.
,
197
(
2–3
), pp.
127
136
.
19.
Zhou
,
Y.
, and
Ning
,
F.
,
2022
, “
A Feasibility Study on Directed Energy Deposition of SS 316L With Coaxial Wire-Powder Feeding
,”
Manuf. Lett.
,
33
, pp.
686
691
.
20.
Bambach
,
M.
,
Sizova
,
I.
,
Kies
,
F.
, and
Haase
,
C.
,
2021
, “
Directed Energy Deposition of Inconel 718 Powder, Cold and Hot Wire Using a Six-Beam Direct Diode Laser Set-Up
,”
Addit. Manuf.
,
47
, pp.
1
12
.
21.
Ashby
,
A.
,
Guss
,
G.
,
Ganeriwala
,
R. K.
,
Martin
,
A. A.
,
DePond
,
P. J.
,
Deane
,
D. J.
,
Matthews
,
M. J.
, and
Druzgalski
,
C. L.
,
2022
, “
Thermal History and High-Speed Optical Imaging of Overhang Structures During Laser Powder Bed Fusion: A Computational and Experimental Analysis
,”
Addit. Manuf.
,
53
, pp.
1
15
.
22.
ASTM Standard
,
2013
, “
ASTM E8/E8M-13a. Standard Test Methods for Tension Testing of Metallic Materials
,”
ASTM International
,
West Conshohocken PA
.
23.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
An Analytical Model of Energy Distribution in Laser Direct Metal Deposition
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
218
(
4
), pp.
363
374
.
24.
Pinkerton
,
A. J.
,
Syed
,
W. U. H.
, and
Li
,
L.
,
2007
, “
Theoretical Analysis of the Coincident Wire-Powder Laser Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
1019
1027
.
25.
Wu
,
J.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Ren
,
S.
,
Yin
,
C.
,
Cao
,
Y.
, and
Zhang
,
D.
,
2022
, “
Modeling of Whole-Phase Heat Transport in Laser-Based Directed Energy Deposition With Multichannel Coaxial Powder Feeding
,”
Addit. Manuf.
,
59
, pp.
1
15
.
26.
Pinkerton
,
A. J.
,
Syed
,
W. U. H.
, and
Li
,
L.
,
2006
, “
An Analytical Model of the Combined Powder-Wire Deposition Process
,”
Proceedings of the International Congress on Applications of Lasers & Electro-Optics
,
Scottsdale, AZ
,
Oct. 30
, No. 1, Laser Institute of America, p.
804
.
27.
Huang
,
Y.
,
Ansari
,
M.
,
Asgari
,
H.
,
Farshidianfar
,
M. H.
,
Sarker
,
D.
,
Khamesee
,
M. B.
, and
Toyserkani
,
E.
,
2019
, “
Rapid Prediction of Real-Time Thermal Characteristics, Solidification Parameters and Microstructure in Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing)
,”
J. Mater. Process Technol.
,
274
, pp.
1
11
.
28.
Ertay
,
D. S.
,
Vlasea
,
M.
, and
Erkorkmaz
,
K.
,
2020
, “
Thermomechanical and Geometry Model for Directed Energy Deposition With 2D/3D Toolpaths
,”
Addit. Manuf.
,
35
, pp.
1
14
.
29.
Wei
,
C.
,
Sun
,
Z.
,
Huang
,
Y.
, and
Li
,
L.
,
2018
, “
Embedding Anti-Counterfeiting Features in Metallic Components via Multiple Material Additive Manufacturing
,”
Addit. Manuf.
,
24
, pp.
1
12
.
30.
Galicki
,
D.
,
List
,
F.
,
Babu
,
S. S.
,
Plotkowski
,
A.
,
Meyer
,
H. M.
,
Seals
,
R.
, and
Hayes
,
C.
,
2019
, “
Localized Changes of Stainless Steel Powder Characteristics During Selective Laser Melting Additive Manufacturing
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
50
(
3
), pp.
1582
1605
.
31.
Bian
,
L.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2015
, “
Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6Al-4 V
,”
JOM
,
67
(
3
), pp.
629
638
.
32.
Kledwig
,
C.
,
Perfahl
,
H.
,
Reisacher
,
M.
,
Brückner
,
F.
,
Bliedtner
,
J.
, and
Leyens
,
C.
,
2019
, “
Analysis of Melt Pool Characteristics and Process Parameters Using a Coaxial Monitoring System During Directed Energy Deposition in Additive Manufacturing
,”
Materials
,
12
(
2
), pp.
1
11
.
33.
Song
,
L.
,
Bagavath-Singh
,
V.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2012
, “
Control of Melt Pool Temperature and Deposition Height During Direct Metal Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1
), pp.
247
256
.
34.
Ren
,
Z.
,
Zhang
,
D. Z.
,
Fu
,
G.
,
Jiang
,
J.
, and
Zhao
,
M.
,
2021
, “
High-Fidelity Modelling of Selective Laser Melting Copper Alloy: Laser Reflection Behavior and Thermal-Fluid Dynamics
,”
Mater. Des.
,
207
, pp.
1
15
.
35.
Ning
,
F.
,
Jiang
,
D.
,
Liu
,
Z.
,
Wang
,
H.
, and
Cong
,
W.
,
2021
, “
Ultrasonic Frequency Effects on the Melt Pool Formation, Porosity, and Thermal-Dependent Property of Inconel 718 Fabricated by Ultrasonic Vibration-Assisted Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051009
.
36.
Zhou
,
Y.
,
Chen
,
S.
,
Chen
,
X.
,
Cui
,
T.
,
Liang
,
J.
, and
Liu
,
C.
,
2019
, “
The Evolution of Bainite and Mechanical Properties of Direct Laser Deposition 12CrNi2 Alloy Steel at Different Laser Power
,”
Mater. Sci. Eng. A
,
742
(
10
), pp.
150
161
.
37.
Prasad
,
A.
,
Yuan
,
L.
,
Lee
,
P.
,
Patel
,
M.
,
Qiu
,
D.
,
Easton
,
M.
, and
StJohn
,
D.
,
2020
, “
Towards Understanding Grain Nucleation Under Additive Manufacturing Solidification Conditions
,”
Acta Mater.
,
195
(
15
), pp.
392
403
.
38.
Shao
,
J.
,
Yu
,
G.
,
He
,
X.
,
Li
,
S.
,
Chen
,
R.
, and
Zhao
,
Y.
,
2019
, “
Grain Size Evolution Under Different Cooling Rate in Laser Additive Manufacturing of Superalloy
,”
Opt. Laser Technol.
,
119
, pp.
1
10
.
39.
Rońda
,
N.
,
Grzelak
,
K.
,
Polański
,
M.
, and
Dworecka-Wójcik
,
J.
,
2022
, “
The Influence of Layer Thickness on the Microstructure and Mechanical Properties of M300 Maraging Steel Additively Manufactured by LENS® Technology
,”
Materials
,
15
(
2
), pp.
1
14
.
40.
Xi
,
X.
,
Chen
,
B.
,
Tan
,
C.
,
Song
,
X.
, and
Dong
,
Z.
,
2022
, “
Influence of Micron and Nano SiCp on Microstructure Evolution and Mechanical Properties of Laser Metal Deposition AlSi10Mg Alloy
,”
J. Mater Process Technol.
,
306
, pp.
1
15
.
41.
Aggarwal
,
A.
,
Chouhan
,
A.
,
Patel
,
S.
,
Yadav
,
D. K.
,
Kumar
,
A.
,
Vinod
,
A. R.
,
Prashanth
,
K. G.
, and
Gurao
,
N. P.
,
2020
, “
Role of Impinging Powder Particles on Melt Pool Hydrodynamics, Thermal Behaviour and Microstructure in Laser-Assisted DED Process: A Particle-Scale DEM–CFD–CA Approach
,”
Int. J. Heat Mass Transfer
,
158
, pp.
1
13
.
42.
Beevers
,
E.
,
Brandão
,
A. D.
,
Gumpinger
,
J.
,
Gschweitl
,
M.
,
Seyfert
,
C.
,
Hofbauer
,
P.
,
Rohr
,
T.
, and
Ghidini
,
T.
,
2018
, “
Fatigue Properties and Material Characteristics of Additively Manufactured AlSi10Mg–Effect of the Contour Parameter on the Microstructure, Density, Residual Stress, Roughness and Mechanical Properties
,”
Int. J. Fatigue
,
117
, pp.
148
162
.
43.
Cao
,
Y.
,
Wang
,
Y. B.
,
An
,
X. H.
,
Liao
,
X. Z.
,
Kawasaki
,
M.
,
Ringer
,
S. P.
,
Langdon
,
T. G.
, and
Zhu
,
Y. T.
,
2014
, “
Concurrent Microstructural Evolution of Ferrite and Austenite in a Duplex Stainless Steel Processed by High-Pressure Torsion
,”
Acta Mater.
,
63
(
15
), pp.
16
29
.
44.
Wang
,
X.
,
Muniz-Lerma
,
J. A.
,
Sánchez-Mata
,
O.
,
Shandiz
,
M. A.
, and
Brochu
,
M.
,
2018
, “
Microstructure and Mechanical Properties of Stainless Steel 316L Vertical Struts Manufactured by Laser Powder Bed Fusion Process
,”
Mater. Sci. Eng. A
,
736
(
24
), pp.
27
40
.
45.
Era
,
I. Z.
, and
Liu
,
Z.
,
2021
, “
Effect of Process Parameters on Tensile Properties of SS 316 Prepared by Directional Energy Deposition
,”
Procedia CIRP
,
103
, pp.
115
121
.
46.
Zhi’En
,
E. T.
,
Pang
,
J. H. L.
, and
Kaminski
,
J.
,
2021
, “
Directed Energy Deposition Build Process Control Effects on Microstructure and Tensile Failure Behaviour
,”
J. Mater Process Technol.
,
294
, pp.
1
14
.
47.
Cunningham
,
C. R.
,
Dhokia
,
V.
,
Shokrani
,
A.
, and
Newman
,
S. T.
,
2021
, “
Effects of in-Process LN2 Cooling on the Microstructure and Mechanical Properties of Type 316L Stainless Steel Produced by Wire Arc Directed Energy Deposition
,”
ACS Mater. Lett.
,
282
, pp.
1
10
.
48.
Xu
,
X.
,
Mi
,
G.
,
Luo
,
Y.
,
Jiang
,
P.
,
Shao
,
X.
, and
Wang
,
C.
,
2017
, “
Morphologies, Microstructures, and Mechanical Properties of Samples Produced Using Laser Metal Deposition With 316 L Stainless Steel Wire
,”
Opt. Lasers. Eng.
,
94
, pp.
1
11
.
49.
Asgari
,
H.
, and
Mohammadi
,
M.
,
2018
, “
Microstructure and Mechanical Properties of Stainless Steel CX Manufactured by Direct Metal Laser Sintering
,”
Mater. Sci. Eng. A
,
709
(
2
), pp.
82
89
.
You do not currently have access to this content.