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Fig. 25 Effect of c h a n g e s f rom v a l u e s A u sed in Fig. 7 (Section 3.1) for a 
s i ng l e p a n t o g r a p h 

3.8 Dropper Spacing. In [1] it has been suggested that placing 
the droppers more closely near midspan than at the towers would 
be beneficial. In Fig. '25(E) are presented results for the case in 
Fig. 7, Section 3.1, with the changes of dropper stillness to SI 
lb / in . Under (B), Fig. 24, the droppers are uniformly spaced at 
3G0 in. while under (E), Fig. 25, the spacing at the tower is 520 in., 
dropping off regularly to 220 in. at midspan. The variable spac-
ing seems to show no significant improvement for the case studied 
involving soft effective dropper stiffness. Use of additional terms 
in the sine-series expansion for the mode shapes might alter this 
conclusion since with 10 waves in 540 ft the shortest wave was 54 
f t (634 in.) long, which exceeds the dropper spacing slightly. 

4 Conclus ions 
Though a substantial number of computer runs have been 

made for this report, the conclusions to follow should be tem-
pered by the fact that many other system combinations would 
have been possible. Also the runs used a relatively low number 
of modes, 10, and a moderately long time step, 0.05 sec, in order 
to keep costs within bounds. Nevertheless, the trends indicated 
by the results would probably be the same in a more exhaustive 
study. These trends are as follows: 

(a) Sag can be very beneficial, particularly when selected by 
equation (S). 

{!>) The pantograph spacing given by equation (9) is somewhat 
better than twice that spacing. 

(c) Substantial softening of the tower supports gives a modest 
improvement. 

(<7) Choice of pantograph constants b y equal ions (18), (ID), 
and (22) gives substantial improvement. 

(e) Reduced stiffness of the contact spring, equation (23), 
gives definite performance benefits. 

( / ) Reduced effective dropper stiffness, equation (26), shows 
moderate improvement. 

{(j) Softening the dropper spring rate near the tower gave no 
significant improvement for the 10 sine waves used in the calcu-
lations but use of more terms might alter this conclusion. 

(h) Spacing droppers more closely at midspan than at the 
towers gives no significant improvement for the case studied 
involving relatively soft dropper effective stiffness. 
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Fig. 26 Effect of reduced d ropper st i f fness o n l o s s of contact. " B e s t , " 
f r o m equa t i on (9) w i t h V = 2 6 4 0 i n / s e c . (Dropper Kn.efl = 3 0 l b / i n , 
except ad jacent to towers , Kb . e f f = 5 l b / i n . , o therw i se a s in F ig. 11.) 
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D I S C U S S I O N 

A. H. K idder 3 

M y profound respect for the authors' knowledge, of railroad 
pantograph design leads me to think that their evident failure to 
corroborate mathematically the consistently favorable reports 
from European and Japanese experience with so-called "constant 
tension" railroad catenary systems must be attributable to hav-
ing inadvertently assumed some artificially frustrating con-
straints upon the natural ability of a catenary system to dis-
perse, as well as to absorb elastically, whatever mechanical 
energy it may receive from some external power source. 

For example, the authors appear to have made three assump-
tions which could appreciably exaggerate the effect of their 
catenary upon their pantograph: 

3 Consultant, Representing LACAL Industries, Newmarket, On-
tario, Canada. 
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1 That the displacement caused by the pantograph force 
illustrated in the curves of Fig. 3 will not affect the tensile strain 
(or tension) in the elastic, load-supporting wire of the catenary 
system. 

2 That three-dimensionally rigid tower support of the upper 
wire assures equally rigid support of the contact and auxiliary 
wires, despite the fact that the relatively long, elastically sup-
ported droppers nearest the rigid tower may also swing so as to 
provide all of the freedom needed to permit transferring appre-
ciable amounts of incident wave energy into adjacent spans.4 

3 That there is, therefore, essentially no damping effect in the 
catenary system. 

An ideal pantograph system can of course be expected to do no 
more than accommodate itself lo whatever instantaneous varia-
tions in displacement, velocity dy/dt may be required of it in 
order to maintain a harmonically stable, if not constant, con-
tact force. 

Several years of intimate association with investigations of the 
analogous and equally diverting problem of controlling wind-
induced galloping catenary waves in high voltage overhead elec-
tric power transmission lines have led me to suspect, that much of 
the almost baffling complexity of the authors' mathematical 
model, and the attendant risk of misunderstanding its limitations, 
probably are attributable to some failure to realize that the gross 
dynamic response of a railroad catenary system to any external 
power source, such as that of a moving pantograph contact force, 
is predominantly determined b y the net accumulation of energy 
in the system and is almost entirely unaffected b y harmonic 
variations in the disturbing force. 

In the predominantly flexible, elastic, and undamped catenary 
span which is illustrated in Fig. 3 of the paper, all of the energy 
received from the pantograph would be trapped belween the as-
sumed rigidly supported ends of the span. Repeated reflections 
of each of the number of unattenuated traveling waves, respec-
tively introduced b y a succession of n passing pantographs, 
should then be expected to coalesce into a standing wave train 
of more or less simple harmonic motion. 

The simplest method for evaluating the total energy in such a 
standing wave train in an S- foot catenary span, supporting a dis-
tributed mass of m slugs per foot, is to express it. in terms of the 
kinetic energy ^mSv' at the instant when the midloop displace-
ment velocity coA cos co< is maximum. For simple harmonic, 
motion of catenary-shaped wave loops, it can be shown that the 
total galloping wave energy must be 

E = 0.267«)iS(co.l )2, ft lb per span (1 ) 

This relationship, incidentally, provides convenient means for 
estimating the total energy in any galloping wave train, in terms 
of the readily observed maximum height of the waves and their 
galloping frequency. 

If there is any catenary damping effect a , the incremental rate 
of increase in wave energy can be expressed directlj ' as follows, 
in terms of the rate p of energy receipts and the rate aE of energy 
losses during that instant, that is, 

dE = [p - aE) dt ft. lb (2 ) 

if p represents the effective average rate of energy receipts, the 
total accumulation in I sec would be, 

E = - ( 1 - £ - « ' ) (3 ) 
a 

I infer that the effect of instantly varying rates of power input p 
upon the net total accumulation E probably can be evaluated most 
readily b y use of the authors' mathematical model which also 
permits accounting for some catenary damping effect a. The re-

4 The bronze wires, for instance, are exceedingly effective conduc-
tors of mechanical energy, by invisible tensile strain waves which 
propagate through swinging supports at a velocity of about two miles/ 
sec. 

sultant effect upon the maximum response velocity to/1 to be 
satisfied b y the pantograph system can then be determined 
directly from equation (1) . This and the minimum practical 
average contact force should serve as the principal if not. exclusive 
criteria for optimum pantograph design. 

If, as a last resort, it should be found that some supplementary 
catenary damping is necessary in order to maintain a satisfac-
torily stable catenary-pantograph interface, it is entirely possible 
that this could be provided at minimum cost b y inserting some 
recently proposed friction dampers5 in series with the tension of 
the upper catenary wire, i.e., at each of the fixed supports and on 
intermediate swinging supports at. intervals of two or more span 
lengths. At any rate, this would seem to me to require much less 
effort and inconvenience than resagging the catenary, respaeing 
droppers, etc., as suggested by the authors' conclusions a, c, f, g, 
and h. 

Conc lus ions 

1 Complete solutions of catenary-pantograph system inter-
face problems require reconciling the singularly different needs 
and characteristic responses of two essentially sovereign systems. 

2 The effects of a pantograph upon a catenary system are 
almost exclusively determined b y average rather than by in-
stantaneous rates of power transfer through the pantograph-
catenary interface, and can be reduced if the pantograph can be 
made sufficiently agile to permit reducing the average contact 
force. 

3 When the combination of a minimum practical contact force 
and maximum practical pantograph agility will not be sufficient to 
assure a tolerably stable pantograph-catenary interface, ap-
preciable relief can be provided b y inserting additional damping 
resistance in the catenary system. 

Authors ' Closure 
W e wish to thank Mr. Kidder for his interest and for submit-

ting his discussion to our paper. Our reply is prefaced here b y a 
clarification of what may be a misunderstanding of the intent of 
parts of this paper. The companion paper, 68-RR-2, describes a 
mathematical model and digital computer program for simulating 
the dynamics of one or more pantographs traversing an overhead 
electrical distribution system, commonly called a "catenary. " 
Fig. 2 in that paper illustrates the mathematical model of the 
catenary that is included in the computer program. This paper, 
6 8 - R R - l , reports on the selection of parameters used as input 
data for the above computer program, and the results of the 
calculations. Section 2 of this paper ( 6 8 - R R - l ) describes the 
theoretical approach used to determine the ranges of values of the 
catenary and pantograph parameters to be investigated with 
the computer program. Fig. 3 illustrates how taut cable theory 
is used to estimate the desirable static sag of the overhead wire 
and the desirable spacing between two or more pantographs. 
Fig. 3, with only one span of a single cable having fixed ends, 
should not be misconstrued to be the mathematical model used 
for the actual catenary. 

The model of the actual catenary system, illustrated b y Fig. 2 
in 6S-RR-2, considers the energy at all times, in up to ten con-
secutive spans of wire, and considers that clamping is distributed 
throughout the catenary system. Any changes in the initial 
static tensions of both the upper wire and the lower wire caused 
by the moving pantograph forces are considered to be negligible 
secondary effects, and both tensions are assumed to remain 
constant. There are several thousand pounds of initial static 
tension in each wire, and the maximum deflections, both com-
puted and observed, are usually in the range of 5 in. to 7 in. If 
there is a slight change in the tensions, it will mean that the 

5 Kidder, A. H., "Proposed Friction Damper for Galloping Con-
ductor Waves," IEEE Transactions, Vol. PAS-86, Nov. 1967, pp-
1368-1374. 
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traveling waves will propagate somewhat faster, but with no 
significant change in the overall effects. In addition, with cross 
cable suspensions of the catenary (called "cross-span construc-
t ion" ) both wires can move slightly in the direction of their 
length with some restraint, enough to accommodate most of the 
elastic strain that would occur if the ends of the cable were other-
wise fixed. As for constant tensioned cable catenary system 
(weights and pulleys) used outside the United States, the as-
sumption of negligible increase in tensions is even more valid. 

i l l ' . Kidder has stated the overall problem very well in his 
three conclusions, and because of this problem, considerable 
efforts are underway by many people around the world to develop 
pantographs and catenaries for high-speed operation. How-
ever, it is unfortunate that limiting conditions do not allow the 
use of a pantograph that is "sufficiently agile to permit reducing 
the average contact force." The Japanese have approached this 
011 their new Tokaido Line using a small pantograph with dampers 
that operates at an extended height of about 3 ' / s ft- However, 
with more than one pantograph per train, some current collection 
difficulties have been observed, even under composed compound 

catenary with clampers and under constant tension. Panto-
graphs 011 European railways are extended about- 5 ft- to 9 f t 
upward, but in the U. S. pantographs are normally extended 
from 8 ft to 12 ft upward. Consequently, there is the difficult 
problem of trying to develop large pantographs that- are "agile ." 

Concerning the installation of dampers in the catenary, this 
has been done on the Tokaido line and in limited tests 011 some 
European railways, but the thinking at this time is that dampers 
in the catenary system would be too inconvenient and too ex-
pensive to install and maintain. With two dampers per span, 
it would require roughly 9000 dampers for a single track bet-ween 
Washington, D. C. and New York, assuming 270 ft spans 
throughout the 226 miles. Many of the people working 011 this 
problem believe it is more practical at this time to use clampers 
in the pantographs than in the catenary system. Also, recent 
practice with constant tensioned catenary systems outside of the 
U. S. has been to cut- dropper lengths to give a prescribed sag to 
the contact wire that is symmetrical about the midspan, and once 
installed, there is 110 maintenance as there probably is with 
clampers. 
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