1 Draw an arbitrary inflection circle I, Fig. 4. The inscribed angle subtended by arc $P_{1} P_{2}$ is equal to the specified angle α. The two arbitrary points P_{1} and P_{2} serve as the instantancous centers of the adjustable four-bar linkage. Line " b '" through points P_{1} and P_{2} dictates the position of link $B_{0} B$ and P_{2} is also the point $J_{B_{1}}$, the point of intersection between link $B_{0} B$ and the inflection circle I.

2 Draw an arbitrary line " a " through P_{1}, which represents the position of link $A_{01} A$. This line " a " intersects inflection circle 1 at point $J_{A 1}$.

3 Join points $J_{A 1}$ and $J_{B i}$. This line is parallel to collineation axis I, according to Bobillier's construction. Thus collineation axis I can be drawn through P_{1}.

4 Draw an arbitrary line " l " intersecting lines " a ' and " b " at points A and B; collineation axis I at point D_{1}, and line $J_{A 1} J_{B 1}$ at point M_{1}.
5 Join $M_{1} P_{1}$. This line, according to Bobillier's construction, is parallel to the fixed link $A_{01} B_{0}$. Thus, the fixed pivots A_{01} and B_{0} can be located by drawing a line through D_{1}, parallel to $M_{1} P_{1}$, intersecting lines " a " and " b." The four-bar linkage $A_{01} A B B_{0}$ is thereby established.

6 Join $A P_{2}$. With point A as the center, $A A_{01}$ as the radius, strike an arc intersecting line $A P_{2}$ at A_{02}. Thus, $A_{02} A B B_{0}$ is the new four-bar linkage with the fixed pivot A_{01} adjusted through an angle θ.

7 Construct the inflection circle $I I$ of the four-bar linkage $A_{02} A B B_{0}$ by Bobillier's construction as shown. Inflection circle $I I$ intersects inflection circle I at point C which is the required coupler point.

8 Since point C is also on inflection circle I, it sees arc $P_{1} P_{2}$ at angle α. Therefore the straight lines traced out by point C should be perpendicular to lines $P_{1} C$ and $P_{2} C$ and form an angle α.

The graphical solution presented in the foregoing satisfies the requirement of a specified α, only. Four arbitrary decisions were made:

1 Inflection circle I (size)
2 The location of points P_{1} and P_{2} on inflection circle I
3 Line " a " through P_{1}
4 Line " l "'
Thus, other requirements could be satisfied by placing additional restrictions on the technique, which would eliminate one or more "arbitrary decisions." The intrinsic flexibility of this technique is most helpful in solving demanding problems.

As an example, suppose both angles α and θ are specified. Referring to Fig. 4, point A sees line $P_{1} P_{2}$ through an angle θ. The locus of point A is a circle are with angle θ subtended by chord $P_{1} P_{2}$. Fig. 5 shows the graphical solution of an adjustable four-bar linkage with both angles α and θ specified.

1 Draw an arbitrary inflection circle I with the inscribed angle subtended by arc $P_{1} P_{2}$ equal to the specified angle α. Line " b " through $P_{1} P_{2}$ again dictates the position of link $B_{0} B$.

2 Draw another circle " O " with the inscribed angle subtended by arc $P_{1} P_{2}$ equal to the specified angle θ. Select point A on circle " O " as a pivot point of the four-bar linkage. Draw " a " through points A and P_{1}, intersecting inflection circle I at point $J_{A 1}$.
3 Draw an arbitrary line " l " through point A intersecting line " b " at point B.

4 Line $J_{A 1} P_{2}\left(J_{B_{1}}\right)$ intersects arbitrary line " l " at points M_{1} and is parallel to collineation axis I. Thus collineation axis I can be drawn through P_{1} and intersects line ' l ' at point D_{1}.

Following steps 5 through 8 described before, the four-bar linkage $A_{0} A B B_{0}$ with adjustable link $A_{0} A$ is obtained to satisfy the requirements of specified angles α and θ.

Acknowledgment

The authors acknowledge with thanks the valuable assistance and cooperation of Mr. R. L. Droke of Electric Typewriter Division, International Business Machines Corporation, in helping to prepare this manuscript.

References

1 A. S. Hall, Kinematics and Linkage Design, Prentice Hall Company, Englewood Cliff, N. J., 1961, pp. 75-77.
2 D. C. Tao, Applied Linkage Synthesis, Addison Wesley Co., Reading, Mass., 1964, pp. 107-108; 122-125.

DISCUSSION

Kurt Hain ${ }^{1}$

Adjustable linkages are important in varying the behavior of a linkage. The simplest way of changing this behavior is to displace a fixed point, as the authors suggest. This paper is a good example that more work should be done at the drawing board to get a simple linkage. It would mean no effort to the designer to solve the given problem when any straight-line mechanism is used and this mechanism is at all turned about the ordered turning point of the straight line. But this solution is much more expensive in practice than the authors' linkage.

The authors mention that the lengths of the "straight line" portions cannot be predicted. This is true as, in the general case, points located on the inflection circle rum through an inflection point only, i.e., the center of curvature changes from one side to the other side of the coupler curve. For some applications, this result is useful; for instance, when an inverted slider represents the output link, which is then at a momentary standstill.

The authors should be asked to expand their method to the production of a better straight line. What about the following proposal: Find a four-bar linkage having a coupler point which is in two positions on two different inflection circles. This leads to an excellent straight line as two points of it are inflection points. Another way could be the use of the classical dimensional synthesis: Two straight lines are given; find a four-bar linkage of which a coupler point runs on one line and, after adjustment of a fixed point, on the other line.

Allen S. Hall, Jr. ${ }^{2}$

One of the more fascinating aspects of linkage mechanisms is the inherent capacity for simple adjustment or change of proportions. This is a subject which has not, in the writer's opinion, received the attention it deserves. It is hoped that the authors will continue to explore the possibilities and present additional solutions.

As the authors have demonstrated in this paper, the designing of linkages adjustable for specific objectives requires, not a new body of theory, but a large measure of ingenuity in applying basic kinematic-geometric propositions.

Delbert Tesar ${ }^{3}$

The paper presents a simple and straightforward graphical technique for the solution of a special problem by means of an adjustable four-bar linkage. Fig. 1 represents the general case where the angle α is unspecified in the statement of the problem. This case is far too general for further development, and the authors wisely consider the special situation where α is specified in advance. This results in a procedure having not more than four design choices:
(a) The size of the inflection circle (and therefore the linkage) is immaterial for the solution of the problem.
(b) The location of P_{1} on inflection circle I. The location of P_{2} is determined by the specified value of α.
(c) One parameter is associated with the direction of line a through P_{1}.

[^0](d) Two parameters are associated with the definition of line (a). Hence there are four design parameters. Generally, the designer will find the totality due to four parameters too unwieldy for a convergent trial-and-error design development. Here the authors have given one example of restricting the range of available linkages by specifying, for example, the significant design choice θ. For a graphical procedure, the designer should find it possible to control three design parameters.
The authors are to be complimented for a particularly simple and interesting solution to the given problem. The adjustable
linkage is unique in its attributes among the available types of mechanisms.

Authors' Closure

The authors wish to express their gratitude to Messrs. Kurt Hain, Allen S. Hall, Jr., and Delbert Tesar for their most helpful and astute observations given in their evaluative discussion of our article.

Because of the constructive tenor of these comments, the authors have been encouraged to continue exploring this specific segment of kinematics and hope to be able to present the results from time to time.

[^0]: ${ }^{1}$ Ing., Institut für Landtechnische Grundlagenforschung, Braunschweig, Germany.
 ${ }^{2}$ Mechanical Design, T-7, University of California, Berkeley, Calif. Mem. ASME.
 ${ }^{3}$ Associate Professor of Mechanical Engineering, University of Florida, Gainesville, Fla.

