
except for a factor of (1 — i>2). This is the same factor that ap-
plies to the beam bending deflection equation. Hence, wide 
beams may be treated in the usual manner, i.e., by using E / ( 1 
— v2) instead of E. This is valid for all formulas given herein. 

Beams of Relatively Great Depth 
Classical beam theory is usually not recommended for beams 

having a span/depth ratio less than 8 for metal beams of compact 
section, or less than 15 for beams with relatively thin webs. 
This is "because of the importance of shear deflections." I t is 
interesting to compare the relative magnitude of deflections due to 
rotation at the built-in end(s) of a beam to the deflections due 
to shear in the beam itself. In the case of an end loaded cantilever, 
both of these deflections increase linearly with the distance X 
from the built-in end. Hence the ratio of these deflections will 
be the same for all X. Fig. 4 gives the value of this ratio for 
rectangular beams where Es = E. Shear deflections were calcu-
lated using a shear factor of 1.2 and a Poisson's ratio of 0.3. 
Note that for L/h = 8, the deflections due to rotation are an 
order of magnitude more significant than shear deflections, even 
when fillets are used. 

If one takes account of the deflections due to rotation at the 
built-in end(s) of a beam, classical beam theory can be used for 
considerably shorter-stubbier beams than indicated above with-
out introducing large errors. Classical beam theory gives satis-
factory results for stresses in beams which are as short as three 
times the depth. Moreover, local stresses introduced by the 
loads in even shorter beams reduce the bending stresses below 
those given by simple beam theory. 
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D I S C U S S I O N 
A. H. Burr3 

For a rectangular, cantilever beam with small fillets and a 1:1 
ratio of length to depth, Fig. 3 of the paper indicates that the 
effect of flexibility or rotation at the built-in end is to increase the 
deflection at the free end by about 50 percent over that obtained 
from bending and shear alone. A gear tooth is a beam with about 
the same ratio of length to depth at the built-in end, but with a 
depth decreasing toward the free end. The smaller depth would 
increase the deflection due to bending and shear, and thus appear 
to give a percentage increase less than 50 percent due to rotation 
at the built-in end. Nevertheless, the increase is significant. 

' Professor and Head, Department of Machine Design, Sibley 
School of Mechanical Engineering, Cornell University, Ithaca, N. Y. 
Mem. ASME. 

D R I V E N 

Tooth deflection in gear drives is important because it affects 
the division of load between pairs of teeth and the kinematic and 
dynamic action. For unloaded gears, shown in full lines in Fig. 7, 
tooth engagement occurs at point E where the addendum circle of 
the driven gear intersects the theoretical line of contact EP. For 
loaded gears the pair of teeth already in contact at C deflects in 
bending. This, together with surface deformation at C, allows 
the driving gear to advance relative to the driven gear so that the 
teeth have the position shown by the dotted lines. This allows 
engagement to occur prematurely at point E'. As rotation con-
tinues, the teeth of the second pair are deflected and they share 
the load with the first pair. The distance EE' is increased by 
greater tooth flexibility and by errors in tooth spacing. Hence, 
the effect which the author of the paper has studied, the increase 
of deflection from rotation at the built-in end, significantly 
affects the tooth loading conditions. 

Initial studies of load division by Peterson and Baud [4]4 and 
of premature engagement by Burr [5] and by Burr and Peterson 
[6], did not include this rotation. A recent study by Richardson 
[7] takes the rotation into account. He uses the tooth deflec-
tion equations developed by Weber [8] in which deformation of 
the rim adjacent to the root of the tooth is determined by an 
energy method. This method differs from the author's. 
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Bernard W. Shaffer5 

In some areas of stress analysis, such as the pressure vessel 
field,6 the rotational flexibility of neighboring sections is always 
taken into account. Yet it is frequently neglected in other fields 
of application because of what appears to be an obvious dif-
ference in relative rigidity. A connection between a beam and 
a semi-infinite body is one such application. It is, therefore, 
helpful that attention has been called to the fact that a signifi-
cant error may be introduced by always treating such beams 
with the conventional built-in boundary conditions. 

The author's reference to an elasticity solution based on com-
plex variable techniques may leave some design engineers with 
the impression that the solution contained in the present paper 
satisfies all boundary conditions. Yet, as we both know, the 
author has not been able to satisfy continuity of displacements 
in three dimensions at the junction between the beam and the 
half-plane within the framework of the theory of elasticity. 
Consequently, any formula for rotation of the support can at 
best only be a reasonable approximation for use by the design 
engineer. This fact does not detract from the author's con-
tribution because the total elasticity problem is a formidable 
one. Nevertheless, I hope the author agrees that the foregoing 
fact should be called to the attention of the reader. 

* Numbers in brackets designate Additional References at end of 
discussion. 

6 Professor of Mechanical Engineering, New York Universitv, 
New York, N. Y. 

6 Bernard W. Shaffer, Ira Cochin, and Morton Mantus, "Optimum 
Length of a Rocket Wall Extension Beyond Its Circumferential 
Keyway," Transactions of the New York Academy of Sciences, series 
II, vol. 21, no. 4, February, 1959, pp. 295-315. 
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Author's Closure 
Concerning Dr. Shaffer's discussion, it should be emphasized 

that the usual assumption that plane sections remain plane 
neglects the local flexibility at the junction of neighboring sections 
ipso facto. This local flexibility should be added to the gross 
flexibility of the members themselves, whether they are beams, 
plates, or shells. To the author's knowledge, this has seldom been 
clone in the analysis of pressure vessels or any other structures. 

Dr. Shaffer is quite correct in his statement that the author has 
not proved continuity of displacements in three directions at the 
junction between the beam and the half-plane for the solution 
given by equation (1) of the paper. However, the assumption of 
linearly distributed stresses at the junction gives an upper bound 
(using the theorem of minimum energy of stresses). On the other 
hand, assuming linear displacements at the junction gives a lower 
bound (since by preventing distortion the construction is made 
more rigid). 

Hence, as pointed out in the paper, the solution is bounded 
16.67 M , . 

The „ „ . . . solution given by 
18 M , 1 5 . 1 8 M 

between —„ , . . . and 
irEs(h'y rEs{h'Y irEs{h'Y 

equation (1) is then established to be accurate within 10 percent. 
The corresponding maximum possible error in the calculated 

beam stresses and deflections is always less than 10 percent of the 
difference between the solution which includes the local flexibility 
and that which assumes a perfectly rigid support. In the case of 
statically indeterminate beams, the maximum possible error is 
even smaller. 

Professor Burr's discussion of the significance of the author's 
work in gear design is appreciated. It raajr be noted that the 
local flexibility at the built-in end of a gear tooth permits a rota-
tion due to shear as well as that due to bending considered in the 
present paper. Further, there is a significant displacement at the 
built-in end of the loaded gear tooth with respect to the adjacent 
tooth caused by the moment and shear loads. Calculation of the 
free end deflections of actual gear teeth forms, including all of 
these effects, indicates that the increase due to the local flexibility 
at the built-in end is usually about 100 percent over that due to 
bending and shear in the "beam." 

Weber obtained the solution for local deformations due to a 
linear bending stress distribution using complex variable tech-
niques. This approach differs from the author's. His effective 
rotation, like the author's, is based on the equivalent energy 

concept, and is identical to the ^ {}')" s o ' u ^' o n obtained by the 

author for a linear stress distribution. 
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