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Sensor Fusion and On-Line
Monitoring of Friction Stir Blind
Riveting for Lightweight
Materials Manufacturing
This research focused on developing a hybrid quality monitoring model through combining
the data-driven and key engineering parameters to predict the friction stir blind riveting
(FSBR) joint quality. The hybrid model was formulated through utilizing the in situ process-
ing and joint property data. The in situ data involved sensor fusion (force and torque
signals) and key processing parameters (spindle speed, feed rate, and stacking sequence)
for data-driven modeling. The quality of the FSBR joints was defined by the tensile strength.
Furthermore, the joint cross-sectional analysis and failure modes in lap shear tests were
employed to confirm the efficacy of the proposed model and development of the process–
structure–property relationship. [DOI: 10.1115/1.4052907]
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1 Introduction
Carbon fiber-reinforced polymer (CFRP) composites are light-

weight materials that have been increasingly used in many indus-
tries for their relatively high strength-to-weight ratio compared to
other materials [1–3]. One of the notable applications of CFRP
composites is in the automotive industry for lightweighting,
where CFRP composites are joined with different metals to obtain
dissimilar materials structure. On a broader spectrum, the joining
techniques for CFRP with dissimilar materials can be divided into
two categories. The first category can be classified as welding
where different techniques such as ultrasonic welding [4], friction
stir welding [5], and laser welding [6] have been mostly used.
The second category is mechanical fastening [7], where a rivet,
screw, bolt, or stud is usually utilized to mechanically join two or
more pieces together. Friction stir blind riveting (FSBR) is a prom-
ising one-sided joining technique that integrates the advantages of
both friction stirring welding and mechanical riveting [8]. During
the last decade, FSBR has demonstrated its superiority in manufac-
turing sound dissimilar materials joints where different metals such
as Al, Fe, and Mg have been successfully joined [9,10]. In addition,
researchers have also employed FSBR for joining CFRP with
metals such as Al and Mg [11]. However, most of the existing
studies about FSBR process optimization relied on utilizing the
ex situ results from destructive testing (i.e., the maximum load
from tensile tests) and tensile failure modes to determine the
process window [12,13]. Furthermore, the available studies

analyzed single-point data, i.e., maximum penetration force and
maximum torque, retrospectively, while the rich information
hidden in the real-time force and torque signals was not extracted
or explored [14]. To ensure robust control of the FSBR process,
therefore, it demands an online quality monitoring methodology
that can capture the variations in the process. This study addresses
this challenge with five approaches: (1) by representing the FSBR
force and torque signals in tensor objects and introducing tensor
decomposition methods to extract features from the signals,
whereas the two signals were handled separately previously;
(2) by considering the general case of FSBR with various process
parameters, whereas one specific experimental setting is employed
previously; (3) by extending the feature selection method to handle
continuous and categorical features simultaneously, while only con-
tinuous features were considered in Ref. [15]; (4) by optimizing a
weighted classifier fusion method to estimate the quality of FSBR
joints, whereas arbitrarily chosen classifiers for quality evaluation
were used earlier; and (5) by developing a process–structure–
property (PSP) linkage through correlating process parameters,
mechanical property (maximum load), and joint structure.
This research, therefore, focuses on developing a sensor fusion

and online process monitoring method to enable quality evaluation
of the FSBR process. This goal was realized by analyzing the real-
time data of state variables, i.e., penetration force and torque signals
recorded during the FSBR joining of CFRP and aluminum alloy
6111 (AA6111) sheets. For this purpose, machine learning proto-
cols were applied to establish the relationship between the
process variables and the quality of the joints (maximum load) by
integrating feature extraction, feature selection, and classifier
fusion. In this research, features extracted from the in situ signals
were combined with critical parameters defined based on
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engineering knowledge to provide quality evaluations for the joints.
Furthermore, cross-sectional analysis was performed and related to
the predicted quality to evaluate the model performance. A PSP
linkage was hence established by integrating the quality (property),
joint cross sections (structure), and state variables (process).

2 Materials and Experimental Procedure
Aluminum alloy sheets (AA5754-O) and injection molded CFRP

(Polyamide 66 matrix with 40 wt% carbon fiber with a fiber length
of 300–500 µm) each with a thickness of 3 mm were utilized for
manufacturing FSBR joints. Table 1 presents the mechanical prop-
erties of the two workpiece materials. SSPV-86 Monobolt, blind
rivet, was used in this research where the shoulder diameter was
6.5 mm, tip diameter was 6.4 mm, and the length under the rivet
head was 23.7 mm. The rivet was made of medium carbon steel
with a hollow mandrel tip and zinc coating. The shear and tensile
strength of the rivet were 10,675 N and 8,229 N, respectively [13].
In this study, the FSBR process is utilized to fabricate lap sheer

joints from two material stack-up combinations, AA6111-CFRP
(AA6111 is the top sheet) and CFRP-AA6111 (CFRP is the top
sheet), at various spindle speeds (ω= 3000 and 5000 rpm) and
feed rates ( v = 120 and 420 mm/min). Furthermore, a dynamometer
for recording the force and torque signals was fastened with the
fixture. Details of the FSBR process can be found in Ref. [12]
while the experimental setup is provided in Fig. 1.
Quasi-static tensile testing was performed to classify the joint

quality using an Instron 5500R universal testing machine under a
constant displacement rate of 3 mm/min at room temperature.
Table 2 provides the number of joints manufactured using a specific
experimental setting and the number in parentheses represents the
number of joints subject to tensile test, for instance 49
CFRP-AA6111 FSBR joints were obtained using a feed rate of
120 mm/min and 5000 rpm where eight joints were subjected to
tensile test. Not all joints were tested due to time and cost
constraints.
A Nikon microscope was used for acquiring cross-sectional

images of the FSBR joint where the metallurgical sample was
first mounted in epoxy and then cross sectioned using a precision
diamond saw blade. The samples were then polished with silicon
papers following a sequence of #320, #600, and #800, and finally
polished with diamond suspensions down to 1 µm.

3 Data Filtering and Selection Technique
3.1 Force and Torque Signals. During the process, the pene-

tration force and torque data were recorded at discrete time inter-
vals, i.e., after every 0.01 s. Figure 2(a) shows the raw signals in
fabricating an AA6111-CFRP joint under ω= 3000 rpm and v=
120 mm/min. It is noted that the raw dataset contains a lot of irrel-
evant data points recorded before and after the actual FSBR process.
To remove the irrelevant data points in the raw signals, the start and
end times of each process were identified and then the data were
extracted for 6 s (Total time for the process is 6 s. Start time was
defined when there is an increase in the force signals and end
time is defined when there was an abrupt increase at the end of
the process due to the constant force applied from the machine

spindle after the rotation stops). Furthermore, to remove noises
from the multi-sensor nonlinear profile data, the data profiles
were represented in high-dimensional arrays and tensor decomposi-
tion methods were used to extract features from the original multi-
sensor data. For this purpose, the wavelet method was utilized to
localize the patterns in the signal which provides the advantage of
preserving the important signal features while removing noise.
Figure 2 is an example of the collected penetration force and
torque data during the process, where Fig. 2(b) shows the de-noised
and truncated signals for the raw signals in Fig. 2(a). It can be seen
that wavelets can effectively de-noise the force and torque signals
while preserving their original complex shapes.
After pre-processing, the force and torque signals are represented

in a three-way array A, which is a tensor object A ∈ R600×2×N ,
where 600 is the number of data points collected on each signal,
two is the number of sensors, and N= 74 is the number of
samples. Figure 2(b) shows that the pre-processed signals are non-
linear with complex shapes and possible sensor-to-sensor correla-
tion. The scatter plot of the pre-processed force and torque
signals is shown in Fig. 3. It can be observed that many data
points in Fig. 3 are in the vicinity of the diagonal line, indicating
a strong correlation between the two signals.
The correlation coefficient was further calculated between the pre-

processed force and torque signals for all the N= 74 joints. The
boxplot of the correlation coefficients is given in Fig. 4. The correla-
tion coefficients range from 0.0608 to 0.9058, with average 0.6952,
median 0.7419, first quartile 0.6058, and third quartile 0.8194.
Hence, there is a significant correlation between the force and
torque signals in FSBR experiments, which should not be ignored.
Therefore, tensor decomposition methods that can analyze the two
signals together are needed to extract features from A.

3.2 Tensile Testing Data. The maximum tensile loads of the
joints were extracted and used as the quality response of those
joints. Figure 5(a) presents the maximum tensile load data for the
considered configurations where the first number in experiment

Table 1 Mechanical properties of the constituent materials [13]

Materials

Young’s
modulus
(GPa)

Yield
strength
(MPa)

Tensile
strength
(MPa)

Elongation
(%)

AA5754-O (Al) 70 102 234 21
CFRP (PA66
with 40% carbon
fiber)

20.68 No data 248.2 1–3

Fig. 1 FSBR process setup, adapted from Ref. [12]

Table 2 Number of FSBR samples

Feed rate,
ν (mm/min)

Spindle speed,
ω (rpm)

Number of samples (number with
tensile test)

AA6111-CFRP CFRP-AA6111

120 3000 4 (1) 3 (1)
5000 4 (3) 49 (8)

420 3000 3 (0) 3 (2)
5000 4 (0) 4 (3)
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setting represents rpm, second number represents feed rate, and the
alphabets represent stacking sequence. For example, 3000-120 AC
represents 3000 rpm, 120 mm/min, and aluminum as the top sheet.
The tested joints were then clustered into two quality groups based
on their maximum tensile loads where Fig. 5(b) presents the dendro-
gram of hierarchical clustering.
Two quality groups were obtained, namely, the low-quality

group, denoted by Ω0= {i: Li <L0, i= 1, …, N1}, and high-quality
group, denoted by Ω1= {i: Li >L0, i= 1, …, N1}, where Li is the
maximum tensile load of sample i and L0 is the decision boundary.
Based on the quality groups, we assign the quality response of

sample i to be yi= 0 if i∈Ω0 and yi= 1 if i∈Ω1. As shown in
Fig. 5(b), among the N1= 18 joints that had tensile tests, eight
samples are in the low-quality group, Ω0= {2, 3, 4, 5, 10, 11, 12,
13}, and 10 samples are in the high-quality group, Ω1= {1, 6, 7,
8, 9, 14, 15, 16, 17, 18}.

4 Methodology
4.1 Overview. The key steps in the proposed method for

FSBR process monitoring and quality evaluation are shown in

Fig. 2 Force and torque signals of an AA6111-CFRP joint under ω=3000 rpm and v=120 mm/min: (a) raw signals and
(b) pre-processed signals
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Fig. 6. Information about the FSBR process includes parameters in
the experiment setup, material stack-up sequence, and the recorded
force and torque signals. In step 1, engineering-driven features are
extracted from the signals. Two lower rank tensor decomposition
(LRTD) algorithms, multilinear principal component analysis
(MPCA) [16], and uncorrelated multilinear principal component
analysis (UMPCA) [17] are introduced to extract features from
the three-way array, A, representation of the signals, based on mul-
tilinear tensor-to-vector or tensor-to-tensor projections. Details of
the algorithms can be found in Refs. [16,17]. In step 2, the sparse
group lasso (SGL) regression method is applied to select the most
significant features from the extracted features. Selected features
are then fed into five individual classifiers in step 3. The results
from individual classifiers are fused with optimal weights to
obtain the final classification results that indicate the predicted
quality of FSBR joints. Quality information of the FSBR joints is
needed in step 2 and step 3 so that the best features can be selected
and that the classifiers can be optimized. The details of each step
will be elaborated in the following subsections.
By integrating feature extraction, feature selection, and classifier

fusion, the proposed method establishes the relationship between
the FSBR process and joint quality. The proposed method is then
applied to the samples which were not subjected to mechanical
testing (tensile test) so that their quality can be estimated. The pro-
posed method will also provide online monitoring of the FSBR
process.

4.2 Feature Extraction. It is critical to effectively extract fea-
tures from the raw signals to provide useful information about the
FSBR process. Experimental settings—feed rate, spindle speed,
and material stack-up sequence—are represented as categorical fea-
tures. Each feature has two levels, as listed in Table 3. Section 4.2.1
will elaborate on the details on extracting engineering-driven fea-
tures based on our understanding of the process. Section 4.2.2
will introduce the LRTD algorithms for extracting data-driven
features.

4.2.1 Extracting Engineering-Driven Features. Existing
studies on FSBR have identified a few important features based
on the physical understanding of the process, such as the
maximum force value during the penetration of the top sheet,
maximum torque value, the energy consumed, and the time duration
of the process [11,18]. Taking these findings as well as expert
knowledge into consideration, a total of 12 engineering-driven fea-
tures are defined. They are illustrated in Fig. 7 and described in
Table 4.
During the penetration of the top workpiece in FSBR, the

maximum force F1 is recorded at the time t1, at which time the
torque is M1. At time tv, the rivet penetrates through the top work-
piece and touches the interface between the top and bottom work-
pieces; the force at the time tv is Fv and the torque is Mv. The
rivet then continues to penetrate the bottom workpiece and the
maximum force F2 is recorded at the time t2 with torqueM2. In addi-
tion, the maximum torque during FSBR is denoted as Mmax. The
duration of the entire FSBR process is T and the duration of the

Fig. 3 Scatter plot of force and torque signals from Fig. 2(b)

Fig. 4 Boxplot of the correlation coefficients between the pre-
processed force and torque signals

Fig. 5 (a) Maximum tensile loads of AA6111-CFRP (AC) and CFRP-AA6111 (CA) joints at various spindle speeds and feed rates
and (b) clustering result of the FSBR samples: low-quality group Ω0= {2, 3, 4, 5, 10, 11, 12, 13} and high-quality group Ω1= {1, 6, 7,
8, 9, 14, 15, 16, 17, 18}
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penetration of the top sheet is T1. Features S1 and S2 represent the
energy consumed by the force during the penetration of the top
sheet and bottom sheet, respectively. Similarly, feature E represents
the energy consumed by the torque during FSBR. The energy fea-
tures are calculated as the area under the force or torque curve. All
these features are continuous.

4.2.2 Extracting Data-Driven Features. Although engineering-
driven features can effectively represent certain characteristics of
the process, a lot of important information is still hidden in the

complex shapes of the signals and the sensor-to-sensor correlations.
Therefore, unsupervised feature extraction methods are needed to
effectively reduce the dimensionality of the original signals and
to extract data-driven features that contain important information
about the FSBR process.
The principal component analysis (PCA) is a well-understood

method and used the unsupervised multivariate technique to
explain the variance–covariance structure through a few linear com-
binations of the original variables [19,20]. Multilinear extensions of
the PCA allow applying the PCA technique to tensors without
unfolding the original dataset.
Two tensor decomposition algorithms, MPCA [16] and UMPCA

[17], for multi-sensor data, are used in this research. The tensor repre-
sentation of the FSBR force and torque signals isA ∈ RL×J×N , where
L= 600 is the number of data points collected on each signal, J= 2 is
the number of sensors, and N is the number of samples.

4.3 Optimal Feature Selection. The FSBR process is ade-
quately represented by the extracted features, which include cate-
gorical features that represent the experimental settings, 12
continuous features from the force and torque signals based on engi-
neering knowledge, and (P1P2+ 1) continuous features from
MPCA or P0≤ 2 continuous features from UMPCA. Let F
denote the set of extracted features and P = |F| is the total
number of extracted features.
Although a total of N= 74 joints was fabricated, only the N1= 18

joints that had tensile tests can be used to train the quality evaluation
model. Since N1 (number of tested joints) is not large compared to P
(total number of extracted features), feature selection is needed to
identify the most significant features. Feature selection allows the
simplification of the quality evaluation model so that it is easier
to interpret. A good selection of features also enables shorter
model training times, helps to avoid the curse of dimensionality
(especially if P1P2 is relatively large), and enhances model general-
ization by reducing overfitting [21,22].
Since both continuous and categorical features are present in the

extracted features, the feature selection method in this study should
effectively handle mixed-type data. Therefore, the SGL regression
method is adopted as a feature selection method in this study. Cat-
egorical features are treated as grouped features in SGL. Each con-
tinuous feature is treated as a group of size one. For feature
selection, SGL is superior to group lasso in the sense that SGL
selects features with the consideration of groupwise and
within-group sparsity [23–25].

Fig. 6 Flowchart of the proposed method

Table 3 Summary of categorical features

Feature Description

AC/CA AA6111-CFRP (AA6111 is the top sheet) or CFRP-AA6111
(CFRP is the top sheet)

Feed rate v= 120 or 420 mm/min
Spindle
speed

ω= 3000 or 5000 rpm

Fig. 7 Engineering-driven features from Fig. 2’s AA6111-CFRP joint
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Let X denote the N by P matrix of extracted features for all
samples and X1 ∈ RN1×P denote the matrix of extracted features
for the N1 samples with a quality response. Let y denote the
response vector of length N1. The SGL regression extends
lasso (Least Absolute Shrinkage and Selection Operator) regression
by introducing two penalty terms to the objective function:

β̂SGL = argmin
β

1
2N1

‖y −
∑K
k=1

X(k)
1 β(k)‖22 + (1 − α)λ

∑K
k=1

‖β(k)‖2

+ αλ‖β‖1 (1)

where K is the number of feature groups, and X(k)
1 is the submatrix

of X1 with columns corresponding to the predictors in the kth
feature group, k= 1, …, K. The kth group has Jk features and thus
X(k)
1 ∈ RN1×Jk . Vector β(k) ∈ RJk×1 is the coefficient vector of the

kth group. β= {β (k)}k represents the regression coefficients for all
groups.
In Eq. (1), ‖y −∑K

k=1 X
(k)
1 β(k)‖22 is the sum of squared errors for

the grouped features;
∑K

k=1 ‖β(k)‖2 is the l2 norm to account
for the number of groups selected; ‖β‖1 is the l1 norm to account
for the number of individual features selected. The two penalty
terms are controlled by the groupwise sparsity parameter α and
within-group sparsity parameter λ, respectively. If α= 1, Eq. (1)
reduces to lasso regression; if α= 0, SGL reduces to group lasso
regression. The SGL model can be fitted via an accelerated gener-
alized gradient algorithm with backtracking [26–28].
In this study, features are selected based on the available knowl-

edge of X1 and y. The optimal values for α and λ are determined by
leave-one-out cross-validation. The selected features are repre-
sented in the set F̃ ⊆ F with P̃ = |F̃ | ≤ P. X̃1 ∈ RN1×P̃ is the
matrix of selected features for the N1 samples with quality
responses. Applying F̃ to X, we obtain X̃ ∈ RN×P̃ as the matrix
of selected features for all the N samples; let X̃2 ∈ RN2×P̃ denote
the matrix of selected features for the N2 samples without quality
response.

4.4 Quality Evaluation. A weighted classifier fusion method
is developed to establish the relationship between the selected fea-
tures and the quality response of the FSBR joints. Multiple classifi-
ers are employed to overcome the large bias or large variance
associated with the implementation of an individual classifier.

The proposed fusion approach classifier weights the probability
outputs of individual classifiers and then sums them up to estimate
a final probability, based on which the class label is assigned. The
proposed approach is different from the traditional weighted major-
ity voting approach, the outputs of individual classifiers are
weighted and linearly summed up, and the class label with the
largest weight is chosen as the final classifier fusion result [29].
Since quality evaluation for FSBR is essentially a binary classi-

fication problem, the probability of assigning sample i to the high-
quality group Ω1 will be estimated in each classifier. Let πci denote
the probability that classifier c assigns sample i to Ω1. The proba-
bilities πci will be weighted and fused to obtain the final probability
estimation. The proposed fusion approach is different from the tra-
ditional weighted majority voting approach since it relies more on
the probability outputs rather than the class labels. The rationale
behind the proposed approach is elaborated in the following intui-
tive example. If sample i has π1i = 0.95 with class label 1 and π2i =
0.45 with class label 0, assuming equal weights for the two classi-
fiers, the traditional voting approach would produce a tie between
label 0 and label 1, whereas the proposed approach would give a
final probability of πi = (π1i + π2i )/2 = 0.7, which indicates that
class label 1 should be assigned to sample i. The result from the pro-
posed fusion approach is consistent with our intuition since π1i is
close to 1, indicating high confidence in the classification, while
π2i is close to 0.5, indicating uncertainty in the classification.
In the proposed weighted classifier fusion approach, X̃1, the

matrix of selected features for the N1 samples with the quality
response and the quality response y are fed into five individual clas-
sifiers to obtain the probability outputs, which are then fused to
obtain the FSBR quality evaluation model.

4.4.1 Individual Classifiers. The individual classifiers adopted
in the proposed fusion approach are logistic regression, kernel
support vector machine (KSVM) with the polynomial kernel,
KSVM with Gaussian kernel, neural network, and k-nearest neigh-
bors. These five classifiers are chosen to address different types of
patterns in the dataset.

4.4.2 Weighted Classifier Fusion. The estimated probability
that classifier c assigns sample i to Ω1 is denoted as π̂ci . The prob-
abilities from individual classifiers are weighted and linearly
summed up to obtain the fused probability estimation as shown in
Eq. (2):

π̂i =
∑C
c=1

wc × π̂ci (2)

where wc is the weight for the cth classifier;
∑C

c=1 wc = 1 and 0≤
wc ≤ 1, c= 1, …, C. π̂i is the final estimated probability that
sample i is assigned to Ω1. The class label is then assigned by com-
paring π̂i to a threshold π0, represented in a logistic function as
follows:

ŷi =
1

1 + e−a(π̂i−π0)
(3)

where ŷi is the predicted class label for sample i; a is the conver-
gence rate so that ŷi = 1 if π̂i ≥ π0 and ŷi = 0 if π̂i < π0.
The performance of the weighted classifier fusion approach

is evaluated by the correct classification rate (CCR). If all the
N1 samples are considered in this evaluation, then the CCR

Table 4 Summary of engineering-driven features

Feature Description

F1 Maximum force value during the penetration of the top sheet
F2 Maximum force value during the penetration of the bottom sheet
Fv Valley force value during the penetration towards the bottom

sheet
M1 Torque value when F1 is recorded
M2 Torque value when F2 is recorded
Mv Torque value when Fv is recorded
Mmax Maximum torque value during the FSBR process
T1 The time duration of the penetration of the top sheet
T The time duration of the entire FSBR process
S1 The area under the force signal in T1
S2 The area under the force signal in T2= T− T1
E The area under the torque signal in T

Table 5 Selected features by SGL

Tensor decomposition method
MPCA UMPCASGL parameters

(α∗, λ∗) F̃A = {F1, PC1, PC3, AC/CA} F̃B = {F1, PC1, AC/CA}
(α = 0.95, λ∗) F̃C = {F1, PC1, PC3, AC/CA, υ, ω} F̃D = {F1, PC1, AC/CA, υ, ω}
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is estimated by

ĈCR = 1 −
|ŷ − y|0
N1

(4)

where ŷ denotes the estimated class label vector of length N1, calcu-
lated by Eq. (3); y is the true response vector as obtained by quality
definition in Sec. 2. |ŷ − y|0 is the l0 “norm” that counts the number
of non-zero entries of the vector ŷ − y.
In the proposed fusion approach, the weights wc should be opti-

mized so that the CCR can be maximized. Optimal weights are
therefore obtained by cross-validation. In k-fold cross-validation,
as each of the k subsamples are used as the validation data, a
CCR result is obtained. The k CCR results from the folds can
then be averaged to produce an average CCR, denoted as CCR.
The standard deviation of the k CCR results is sCCR. Therefore,
the optimal weights maximize CCR while keeping sCCR small. Fur-
thermore, the definition of signal-to-noise ratio (SNR) is employed
to obtain the optimal weights by

w∗ = arg max
w

SNR = arg max
w

CCR/sCCR (5)

where w is the vector of wc’s.
Once the parameters, including the optimal weights, in the clas-

sifier fusion approach, are obtained, the quality evaluation model
can be expressed as

ŷi =
1

1 + e−a
∑C

c=1
w∗
c × π̂ci − π0

( ) (6)

FSBR joint i is classified into the low-quality group Ω0 if ŷi = 0;
we assign i∈Ω1, the high-quality group, if ŷi = 1.

5 Results
Data-driven features are extracted from tensor A ∈ R600×2×74 of

the FSBR force and torque signals by MPCA and UMPCA. In
MPCA, by keeping θ= 80% of the total variation, A is projected
onto a low-dimensional tensor S ∈ R3×1×74. The L= 600 data
points collected on each signal are projected onto P1= 3 features;
the J= 2 sensors are projected onto P2= 1 feature. The residual
tensor E then represents 20% of the total variation. A total of
(P1P2+ 1)= 4 features are extracted by MPCA. In UMPCA, since
the number of extracted features is limited by 2, P0= 2 uncorrelated
features were extracted from A. The data-driven features from
either MPCA or UMPCA are then combined with the 12
engineering-driven features and three experimental setting parame-
ters to form the feature set F . P = |F| = 15 + (P1P2 + 1) = 19 if
MPCA is adopted and P= 15+P0= 17 if UMCPA is adopted.

5.1 Feature Selection. In feature selection, categorical fea-
tures are treated as grouped features in SGL. The feed rate and
spindle speed are combined into a feature group of size four that
represents the process parameters. “AC/CA” is treated as a group
of size two that represents the material stack-up sequence. Each
continuous feature is treated as a group of size one. Table 5
shows the results of optimal feature selection by SGL.
The optimal sparsity parameters are (α∗, λ∗), determined by

leave-one-out cross-validation. When data-driven features from
MPCA are adopted, the selected features are {F1, PC1, PC3, AC/
CA}, denoted by a set F̃A, where PC1 and PC3 represent the first
and third principal components extracted from MPCA. When data-
driven features from UMPCA are adopted, the selected features
are {F1, PC1, AC/CA}, denoted by a set F̃B, where PC1 represents
the first principal component extracted from UMPCA. As listed in
Table 3, F1 is the engineering-driven feature that represents the
maximum force during the penetration of the top sheet in FSBR.
Two critical process parameters—feed rate v and spindle speed

ω—are not selected by the (α∗, λ∗) SGL. To include these features

in the selected set, α is fixed to 0.95 and λ∗ is then determined by
leave-one-out cross-validation. When features from MPCA are
adopted, the selected features are {F1, PC1, PC3, AC/CA, v, ω},
denoted by the set F̃C; when features from UMPCA are adopted,
the selected features are {F1, PC1, AC/CA, v, ω}, denoted by a
set F̃D. These four scenarios are denoted as A, B, C, and D.
Following the notations in Sec. 4.2, we let X̃A ∈ RN×P̃A denote

the matrix of selected features of the set F̃A for all the N samples,
P̃A = |F̃A|. X̃A is further split into X̃1A ∈ RN1×P̃A and X̃2A ∈
RN2×P̃A for the samples with and without quality responses, respec-
tively. Similarly, for the selected feature subsets F̃B, F̃C , and F̃D,
we obtain matrices X̃B ∈ RN×P̃B , X̃C ∈ RN×P̃C , and X̃D ∈ RN×P̃D .
Each matrix is further split into two matrices: X̃1B ∈ RN1×P̃B ,
X̃1C ∈ RN1×P̃C , and X̃1D ∈ RN1×P̃D for the N1 samples with the
quality response; X̃2B ∈ RN2×P̃B , X̃2C ∈ RN2×P̃C , and X̃2D ∈
RN2×P̃D for those without a quality response.

5.2 Weighted Classifier Fusion. The individual classifiers in
the proposed fusion approach are (i) logistic regression,
(ii) KSVM with polynomial kernel of degree d= 2, (iii) KSVM
with the Gaussian kernel of γ= 0.25 and non-separable penalty
parameter of 100, (iv) neural network with a single hidden layer,
eight nodes in the hidden layer, and a decay rate of η= 0.1 to
help reduce overfitting, and (v) k-nearest neighbors with k= 7.
The fusion model in Eq. (6) has π0= 0.5 as the decision boundary
and a= 1000 as the convergence rate.
Cross-validation is used to determine the optimal weights in clas-

sifier fusion. Taking all N1 samples into consideration, the optimal
weights for each feature subset are shown in Table 6. w∗

lr , w
∗
psvm,

w∗
gsvm, w

∗
nn, and w

∗
knn are the optimal weights for logistic regression,

polynomial KSVM, Gaussian KSVM, neural network, and
k-nearest neighbors, respectively.
The N1= 18 samples with quality responses are divided into a

training dataset and a testing dataset by stratified sampling. Specifi-
cally, the testing dataset contains four samples: two randomly
selected from the low-quality group Ω0 and two from the high-
quality group Ω1. Since Ω0 contains eight samples and Ω1 contains
ten samples, the total number of unique datasets is

8
2

( )
×

10
2

( )
= 1260

The proposed method is applied to each unique partition to obtain
a training CCR and a testing CCR. Considering all 1260 unique par-
titions, CCR, sCCR, and SNR = CCR/sCCR values were obtained
and the results are shown in Table 7.
The following observations are deduced from Table 7. All sce-

narios have high CCR and small sCCR for the training dataset.
The highest training CCR is obtained in scenario D while the smal-
lest training sCCR is obtained in scenario C (the obtained values are
marked in italics). Scenario C yields the highest training SNR. Sce-
narios B and D also give high SNR results for the training dataset
(the obtained values are marked in italics). Scenario B yields the
best result for the testing dataset by looking at the combined
values with respect to the highest CCR and smallest sCCR. It is there-
fore inferred that the feature subset in scenario B gives the best
quality classification results.

Table 6 Optimal weights for weighted classifier fusion

Scenario

Optimal
weights

w∗
lr w∗

psvm w∗
gsvm w∗

nn w∗
knnDataset

A X̃A 0.0516 0.0214 0.0347 0.3929 0.4995
B X̃B 0.0000 0.0293 0.0273 0.4377 0.5057
C X̃C 0.1824 0.1354 0.0345 0.6477 0.0000
D X̃D 0.2970 0.2764 0.2037 0.2228 0.0000
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For the online monitoring of FSBR, it is recommended to first
extract features by UMPCA, then selecting the optimal feature
subset F̃B = {F1, PC1, AC/CA}, and finally determining the
quality of the FSBR joints by weighted classifier fusion with
optimal weights w*= (0.0000, 0.0293, 0.0273, 0.4377, 0.5057)T.
Based on these results, the quality evaluation model in Eq. (7)
can be rewritten as

ŷi =
1

1 + exp (−1000 × [(w∗×hc(X̃B,i)) − 0.5])
(7)

where hc represents the cth individual classifier, c= 1, …, 5. X̃B,i is
the ith row in the matrix X̃B, representing the ith sample in FSBR
joints. ŷi is the prediction label for the ith sample. ŷi = 0 indicates
that the ith sample is classified into the low-quality group Ω0,
whereas ŷi = 1 indicates that the ith sample is classified into the
high-quality group Ω1.
The developed model is then applied to the FSBR samples that do

not have a quality response. Among the N2= 56 joints that were not
tested, 48 are predicted as of high quality and eight samples are pre-
dicted as of low quality.

5.3 Comparison With Traditional Methods. In this subsec-
tion, the importance of extracting data-driven features from the
force and torque signals together via tensor decomposition is dem-
onstrated. Comparison in the performance of the proposed method
with two “traditional” methods is drawn, where in M1 only
engineering-driven features are considered; in M2, data-driven fea-
tures are also considered but these features are extracted from the
two signals separately. The comparison results are summarized in
Table 8.
In M1, the 12 extracted engineering-driven features (see Table 3)

are fed into weighted classifier fusion. The optimal weights for the
five individual classifiers are determined as {0.4000, 0.1737,
0.1481, 0.2345, 0.0437}. The quality evaluation results in both
training and testing datasets are shown in Table 8. It can be
observed from Table 8 that the performance of M1 suffers from
severe overfitting. In an attempt to reduce overfitting, feature selec-
tion via LASSO is performed, which yielded only one significant
feature out of the 12 engineering-driven features. The selected
feature is T1, the time duration to penetrate the top layer. Expert
knowledge on FSBR, along with the preliminary analysis, suggests
that T1 alone cannot fully represent the complex FSBR process.
Hence, all the 12 engineering-driven features in M1 are selected.

InM2, the two signals are treated separately, ignoring possible cor-
relation, as opposed to analyzing them together in the proposed
method. Applying PCA to the force signals resulted in four PCs
when keeping 95% variance of the original data; applying PCA to
the torque signals resulted in seven PCs when keeping 95% variance
of the original data. With 11 PCs and 12 engineering-driven features,
feature selection via LASSO is performed, which yielded seven sig-
nificant features, {F1, M1, Mv, S1, PCF1, PCT1, PCT4}, includ-
ing four engineering-driven features (F1, M1, Mv, S1 as described in
Table 3) and three data-driven features, where PCF1 is the first PC
from the force signals, and PCT1 and PCT4 represent the first and
the fourth PCs from the torque signals. The seven selected features
are then fed into weighted classifier fusion. The optimal weights
for the five individual classifiers are determined as {0.3000,
0.1746, 0.1609, 0.2660, 0.0986}. The quality evaluation results are
also shown in Table 8. It is noticed that M2 outperformed M1, indi-
cating the importance of adding data-driven features. The
engineering-driven features, although carefully defined, are not able
to fully represent the complex FSBR process, providing inferior
results in quality evaluation.
Table 8 also shows that the proposed method in scenario B out-

performs M2. Recall that scenario B has three selected features for
quality evaluation while M2 has seven. When using tensor decom-
position, the proposed method can achieve more accurate results
with fewer features, facilitating fast and early quality inspection.
The superiority of the proposed method can be explained from
two aspects: (1) the force and torque signals are analyzed together
since high correlation exists between the two signals; this
sensor-to-sensor correlation can be effectively handled by the multi-
linear extensions of PCA; (2) the proposed method incorporates
process settings and material stack-up sequence with the extracted
features, providing more information about the FSBR process;
this addition is enabled by representing them as categorical features
and adopting SGL to handle mixed-type data. Both aspects contrib-
ute to the superiority of the proposed method.

5.4 Process–Structure Relationship. A total of four joint
configurations were selected from the N2 dataset (whose quality is
not experimentally tested) for cross-sectional analysis to validate
the performance of the quality model. Among them, two configura-
tions are selected from predicted low-quality joints and the remain-
ing two are selected from predicted low-quality joints. Furthermore,
for the predicted high-quality joints, each sample is picked from
scenario C and scenario D (defined in Sec. 5.2), respectively.

Table 7 Quality classification results

Scenario SGL parameters
Tensor decomposition

method

Training performance Testing performance

CCR sCCR SNR CCR sCCR SNR

A (α∗, λ∗) MPCA 0.8791 0.0469 18.7346 0.8011 0.1729 4.6338
B (α∗, λ∗) UMPCA 0.8916 0.0402 22.1740 0.8584 0.1499 5.7251
C (α = 0.95, λ∗) MPCA 0.9468 0.0325 29.0977 0.7849 0.1704 4.6056
D (α = 0.95, λ∗) UMPCA 0.9513 0.0429 22.1964 0.7278 0.1849 3.9355

Table 8 Comparing quality evaluation results with traditional methods

Traditional method

Training performance Testing performance

CCR sCCR SNR CCR sCCR SNR

M1 1.0000 0.0000 N/A 0.4608 0.2264 2.0346
M2 1.0000 0.0000 N/A 0.7545 0.1856 4.0648
Proposed method, scenario B (from Table 7) 0.8916 0.0402 22.1740 0.8584 0.1499 5.7251
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Figures 8(a) and 8(b) present cross sections of predicted high-
quality joints. The joint shown in Fig. 8(a) is chosen from scenario
D (UMPCA method) and manufactured with 5000 rpm spindle
speed, 120 mm/min feed rate, and the CFRP sheet is placed on
the top, i.e., CA stacking sequence. The joint presented in
Fig. 8(b) is chosen from scenario C (MPCA method) and manufac-
tured with 5000 rpm spindle speed, 420 mm/min feed rate, and the
CFRP sheet is placed on the top, i.e., CA stacking sequence. Both
Figs. 8(a) and 8(b) revealed no gap between the rivet and the work-
sheet. However, material disintegration at the bottom of CFRP sheet
is observed in Fig. 8(b). Moreover, mechanical interlocking as
described in Ref. [11] is evident in Figs. 8(a) and 8(b) (CA stacking
sequence). In previous research [11], the authors suggested that the
mechanical interlocking served as a key contributor in the final
failure mode of the joint as it prevents rivet slippage and (or) shear-
ing. For the two cases in consideration, the tested joints of the
similar configuration revealed tensile failure (Figs. 8(c)–8(e)).
With regard to the proposed model, scenario D gives the best

result for the testing dataset by looking at the combined values
with respect to the highest CCR and small sCCR.
From the process mechanics perspective, material disintegration

is owed to insufficient heat generation which is attributable to two
phenomena. The first contributing phenomenon is the lower friction
coefficient between CFRP and steel, i.e., 0.3 [30], compared to the
friction coefficient between Al and steel, i.e., 0.6.1 Low friction
coefficient value between the rivet and workpiece material results
in a prolonged sliding-dominant contact condition [31], which
tends to prolonged drilling conditions and higher material
removal rate [32]. The second attributable phenomenon is a high
feed rate which inhibits sufficient material softening. Consequently,
some material gets detached from CFRP when the Al material tried
to form the interlock. Moreover, material disintegration occurred at
the bottom of the CFRP sheet and results in random force signals

Fig. 8 (a) and (b) Cross sections of joints with mechanical interlocking, and (c), (d ), and (e) schematic illustration of tensile failure
mode: (c) joint lap shear testing of the joint, (d ) microscopic pores or cracks owing to the friction stirring or blind riveting process,
acts as a stress concentrator for a transverse propagation of cracking, and (e) final tensile failure perpendicular to the direction of
loading

Fig. 9 (a) Cross section of joint without mechanical interlocking, (b) front view of the joint with thick ring-shaped CFRP residue
and no mechanical interlocking, (c), (d ), and (e) schematic of partial rivet pullout failure mode in AC configuration: (c) lap shear
testing of the joint (thick horizontal arrows indicate the direction of loading), (d ) cracks appearing at the bottom of CFRP sheet and
residue fracture along with nonregular secondary bending of Al sheet, and (e) partial rivet pull out failure mode, where the thick
upward arrow indicates the upward motion of the rivet and different rivet colors (dark or light) are indicative of rivet initial and final
position after the pullout

1https://www.engineersedge.com/coeffients_of_friction.htm
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(noise) which can be confirmed through higher SNR value. There-
fore, scenario D utilizing UMPCA method provides better quality
prediction than scenario C (MPCA method) which is also predicted
through data analysis (Sec. 5.2).
The cross sections of the predicted low-quality joints are pre-

sented in Figs. 9(a) and 10(a). The joint configuration shown in
Fig. 9(a) is manufactured using 5000 rpm spindle speed, 120 mm/
min feed rate, and the Al sheet is placed on the top, i.e., AC stacking
sequence. Rate is devoid of mechanical interlocking (Fig. 9(a)).
Figure 10(a) shows the joint cross section with 3000 rpm spindle
speed, 420 mm/min feed rate, and CA stacking sequence. Both
the configurations are selected from scenario D as it was previously
confirmed as the optimized scenario. Two different failure modes,
i.e., partial rivet pullout and mixed failure (shear+ tensile failure),
were observed.
For the joint without mechanical interlocking (Fig. 9(a)), partial

rivet pullout failure mode occurs rather than tensile failure mode
(Figs. 8(c)–8(e)). In scenarios where the CFRP sheet is placed at
the bottom, in addition to the absence of mechanical interlocking,
a ring-shaped residue is formed at the surface of the CFRP sheet
as the molten material is unable to penetrate the top Al worksheet
(Fig. 9(b)). The ring-shaped residue results in the gap between the
two sheets. During the lap shear testing, small cracks are generated
at the bottom of the CFRP sheet which results in loosening of
contact between the rivet and CFRP sheet (Fig. 9(c)). Further appli-
cation of the load allows the rivet to rotate and move up (Fig. 9(d )).
Simultaneously, change in the loading conditions causes secondary
bending of the Al sheet, thereby preventing complete rivet pullout
(Fig. 9(e)). Visual inspection of the other FSBR joints with AC
stacking sequence revealed that the ring-shaped residue becomes
thinner when a low feed rate and high spindle speed are being uti-
lized because of the generation of more work. Moreover, the gap
between the two sheets increases with the increasing thickness of

ring-shaped residue and resulted in the low-quality joint in some
cases, particularly where a high feed rate and low spindle speed
are employed.
Crown fragmentation is evident at the bottom of the Al sheet in

Fig. 10(a). Low spindle speed (3000 rpm) and high feed rate
(420 mm/min) result in insufficient heat generation to soften the
material. When the rivet tip reached the bottom surface of the
workpiece, the material deforms resulting in crown formation
[18]. For the considered case, crown fragmentation occurs due to
a high penetration force. It is explained that upon lap shear
testing, the bond between the Al rivet and Al sheet got disinte-
grated from the bottom of the worksheet resulting in a small gap
(Fig. 10(b)). The gap continues to grow further as the test pro-
gresses thereby allowing the rivet to rotate in the generated gap.
The rotation of the rivet changes the loading conditions, thereby
introducing the nonregular secondary bending [11] in the CFRP
sheet. In addition, the edge of the rivet head compresses on the
CFRP workpiece (Fig. 10(c)). With the increasing load, stress con-
centration from the rivet head results in the crack generation which
is regarded as a shear failure while the tensile failure mode also
occurred in the CFRP sheet which is perpendicular to the
loading direction (Fig. 10(d )).
It is noteworthy that the proposed model has accurately pre-

dicted the joint quality, i.e., low quality and high quality for all
the considered cases. Furthermore, scenario D was able to
predict the joint quality more accurately as compared to the
other scenarios.

6 Conclusion
This study develops a predictive model for the online monitoring

of the FSBR process in joining CFRP and Al alloy sheets. The

Fig. 10 (a) Cross section of joint with crown fragmentation, (b), (c), and (d ) schematic of mixed failure mode in CA configuration:
(b) small gaps occur at thematerial disintegrated region of the Al sheet upon loading (thick horizontal arrows indicate the direction
of loading), (c) rivet head compresses into the CFRP sheet due to rivet rotation along with nonregular secondary bending in CFRP
sheet, and (d ) mixed failure (tensile+shear) mode
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developed method unveils the statistical relationship between the
FSBR process and the quality of the joints which is further validated
by analyzing joints cross section and failure modes. The key contri-
butions of the present research are as follows.
The proposed data-driven methodology was based on generaliza-

tions of the basic PCA-based approach, in extracting features from
multi-sensor, high-dimensional, and heterogeneous profile data
which were further combined with engineering-driven features
(i.e., process parameters, peak force, stacking sequence) to encom-
pass a wholistic process mechanics aspect. The optimal features
were then selected from the extracted ones using SGL regression.
The selected features were then fed into weighted classifier fusion
to evaluate the quality of the FSBR joints through optimizing the
classification performance in cross-validation. The available
FSBR samples were clustered into a high-quality group and a low-
quality group by hierarchical clustering, and their cluster labels
were considered as the true quality group labels. The CCRs resulted
from various feature extraction methods and feature selection
results were assessed and compared. The results indicated that
both MPCA and UMPCA were effective feature extraction
methods. The average CCR was more than 80%. The proposed
method also significantly outperformed the two traditional methods.
The efficacy of the proposed model was validated through exper-

imental results by analyzing the macrostructure and failure modes
of the joints. The proposed model emerged as an effective tool
for quality prediction as the defective joints (defined through mac-
rostructure) were successfully predicted as the low-quality joints by
the model. Furthermore, two additional failure modes, i.e., partial
rivet pullout and mixed failure, other than previously observed
tensile failure mode were observed. The failure modes were
further correlated with macrostructure (mechanical interlocking
and ring-shaped residue) where an increase in the thickness of the
ring-shaped residue resulted in the transition from high-quality to
low-quality joints. The thickness of the residue was found corre-
sponding to the process parameters where high spindle speed and
low feed rate yielded thin residue and ultimately high-quality
joints. Consequently, the proposed model coupled with experimen-
tal results also aids in developing a PSP linkage.
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