Abstract

Industrial robots have become a suitable alternative to machine tools due to their flexibility, low cost, and large working space. However, the compliance of the robot system makes it prone to produce large deformations and vibrations during machining, resulting in poor machining accuracy and surface quality. In order to improve the machining performance of the robot, a posture optimization method for robotic milling with the redundant degree of freedom is introduced. First, modal tests are conducted at sampled points to obtain the configuration-dependent parameters of the structural dynamics of the robotic milling system. These experimental data are combined with the inverse distance weighted (IDW) model to further predict the modal parameters at the unsampled points. Then, considering the dynamics model of the system, the optimization model based on surface location error (SLE) is proposed to obtain the optimal robotic posture. Finally, a series of experiments illustrate that pose optimization based on SLE can improve the machining accuracy and surface machining quality.

References

1.
Leali
,
F.
,
Vergnano
,
A.
,
Pini
,
F.
,
Pellicciari
,
M.
, and
Berselli
,
G.
,
2014
, “
A Workcell Calibration Method for Enhancing Accuracy in Robot Machining of Aerospace Parts
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
47
55
.
2.
Hong
,
L.
,
Wang
,
B.
,
Xu
,
Z.
, and
Yan
,
Z.
,
2019
, “
Research on Off-Line Programming Method of Spatial Intersection Curve Welding Based on VTK
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5–6
), pp.
1587
1599
.
3.
Lu
,
L.
,
Zhang
,
J.
,
Tian
,
X.
,
Han
,
J.
, and
Wang
,
H.
,
2021
, “
Tool Path Optimization for Robotic Surface Machining by Using Sampling-Based Motion Planning Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011002
.
4.
Zargarbashi
,
S. H. H.
,
Khan
,
W.
, and
Angeles
,
J.
,
2012
, “
The Jacobian Condition Number as a Dexterity Index in 6R Machining Robots
,”
Robot. Comput. Integr. Manuf.
,
28
(
6
), pp.
694
699
.
5.
Shibata
,
T.
,
Abe
,
T.
,
Tanie
,
K.
, and
Nose
,
M.
,
1997
, “
Motion Planning by Genetic Algorithm for a Redundant Manipulator Using a Model of Criteria of Skilled Operators
,”
Inf. Sci.
,
102
(
1–4
), pp.
171
186
.
6.
Dolgui
,
A.
, and
Pashkevich
,
A.
,
2009
, “
Manipulator Motion Planning for High-Speed Robotic Laser Cutting
,”
Int. J. Prod. Res.
,
47
(
20
), pp.
5691
5715
.
7.
Peng
,
J. F.
,
Ding
,
Y.
,
Zhang
,
G.
, and
Ding
,
H.
,
2020
, “
Smoothness-Oriented Path Optimization for Robotic Milling Processes
,”
Sci. China Technol. Sci.
,
63
(
9
), pp.
1751
1763
.
8.
Guo
,
Y. J.
,
Dong
,
H. Y.
, and
Ke
,
Y. L.
,
2015
, “
Stiffness-Oriented Posture Optimization in Robotic Machining Applications
,”
Robot. Comput. Integr. Manuf.
,
35
, pp.
69
76
.
9.
Bu
,
Y.
,
Liao
,
W. H.
,
Tian
,
W.
,
Zhang
,
J.
, and
Zhang
,
L.
,
2017
, “
Stiffness Analysis and Optimization in Robotic Drilling Application
,”
Precis Eng
,
49
, pp.
388
400
.
10.
Xiong
,
G.
,
Ding
,
Y.
, and
Zhu
,
L. M.
,
2019
, “
Stiffness-Based Pose Optimization of an Industrial Robot for Five-Axis Milling
,”
Robot. Comput. Integr. Manuf.
,
55
, pp.
19
28
.
11.
Lee
,
J. H.
,
Kim
,
S. H.
, and
Min
,
B. K.
,
2022
, “
Posture Optimization in Robotic Drilling Using a Deformation Energy Model
,”
Robot. Comput. Integr. Manuf.
,
78
, p.
102395
.
12.
Mousavi
,
S.
,
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2018
, “
Stability Optimization in Robotic Milling Through the Control of Functional Redundancies
,”
Robot. Comput. Integr. Manuf.
,
50
, pp.
181
192
.
13.
Leonesio
,
M.
,
Villagrossi
,
E.
,
Beschi
,
M.
,
Marini
,
A.
,
Bianchi
,
G.
,
Pedrocchi
,
N.
,
Tosatti
,
L. M.
,
Grechishnikov
,
V.
,
Ilyukhin
,
Y.
, and
Isaev
,
A.
,
2018
, “
Vibration Analysis of Robotic Milling Tasks
,”
Procedia CIRP
,
67
, pp.
262
267
.
14.
Xiong
,
X.
,
Li
,
Y. W.
, and
Qin
,
H. J.
,
2018
, “
Structural Dynamic Performance Evaluation of Industrial Robots Based on Vibration Tests
,”
2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC)
,
Chongqing, China
, pp.
302
306
.
15.
Cvitanic
,
T.
,
Nguyen
,
V.
, and
Melkote
,
S. N.
,
2020
, “
Pose Optimization in Robotic Machining Using Static and Dynamic Stiffness Models
,”
Robot. Comput. Integr. Manuf.
,
66
, p.
101992
.
16.
Gonul
,
B.
,
Sapmaz
,
O. F.
, and
Tunc
,
L. T.
,
2019
, “
Improved Stable Conditions in Robotic Milling by Kinematic Redundancy
,”
Procedia CIRP
,
82
, pp.
485
490
.
17.
Wang
,
R.
,
Li
,
F.
,
Niu
,
J.
, and
Sun
,
Y.
,
2022
, “
Prediction of Pose-Dependent Modal Properties and Stability Limits in Robotic Ball-End Milling
,”
Robot. Comput. Integr. Manuf.
,
75
, p.
102307
.
18.
Lei
,
Y.
,
Hou
,
T.
, and
Ding
,
Y.
,
2023
, “
Prediction of the Posture-Dependent Tool Tip Dynamics in Robotic Milling Based on Multi-Task Gaussian Process Regressions
,”
Robot. Comput. Integr. Manuf.
,
81
, p.
102508
.
19.
Chen
,
C.
,
Peng
,
F.
,
Yan
,
R.
,
Tang
,
X.
,
Li
,
Y.
, and
Fan
,
Z.
,
2020
, “
Rapid Prediction of Posture-Dependent FRF of the Tool Tip in Robotic Milling
,”
Robot. Comput. Integr. Manuf.
,
64
, p.
101906
.
20.
Nguyen
,
V.
,
Cvitanic
,
T.
, and
Melkote
,
S.
,
2019
, “
Data-Driven Modeling of the Modal Properties of a Six-Degrees-of-Freedom Industrial Robot and Its Application to Robotic Milling
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121006
.
21.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
22.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
,
2005
, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
446
453
.
23.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
24.
Insperger
,
T.
,
Gradišek
,
J.
,
Kalveram
,
M.
,
Stépán
,
G.
,
Winert
,
K.
, and
Govekar
,
E.
,
2006
, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
913
920
.
25.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2017
, “
Surface Location Error and Surface Roughness for Period-N Milling Bifurcations
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061010
.
26.
Kiran
,
K.
,
Rubeo
,
M.
,
Kayacan
,
M. C.
, and
Schmitz
,
T.
,
2017
, “
Two Degree of Freedom Frequency Domain Surface Location Error Prediction
,”
Precis. Eng.
,
48
, pp.
234
242
.
27.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
28.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031005
.
29.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
2
), p.
024503
.
30.
Chen
,
C.
,
Peng
,
F.
,
Yan
,
R.
,
Fan
,
Z.
,
Li
,
Y.
, and
Wei
,
D.
,
2018
, “
Posture-Dependent Stability Prediction of a Milling Industrial Robot Based on Inverse Distance Weighted Method
,”
Procedia Manuf.
,
17
, pp.
993
1000
.
31.
Cordes
,
M.
,
Hintze
,
W.
, and
Altintas
,
Y.
,
2019
, “
Chatter Stability in Robotic Milling
,”
Robot. Comput. Integr. Manuf.
,
55
, pp.
11
18
.
32.
Mohammadi
,
Y.
, and
Ahmadi
,
K.
,
2021
, “
Single Degree-of-Freedom Modeling of the Nonlinear Vibration Response of a Machining Robot
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051003
.
33.
Lin
,
Y.
,
Zhao
,
H.
, and
Ding
,
H.
,
2017
, “
Posture Optimization Methodology of 6R Industrial Robots for Machining Using Performance Evaluation Indexes
,”
Robot. Comput. Integr. Manuf.
,
48
, pp.
59
72
.
34.
Xiong
,
G.
,
Ding
,
Y.
, and
Zhu
,
L. M.
,
2017
, “
A Feed-Direction Stiffness Based Trajectory Optimization Method for a Milling Robot
,”
Intelligent Robotics and Applications: 10th International Conference, ICIRA 2017
,
Wuhan, China
,
Aug. 16–18
, pp.
184
195
.
35.
Chen
,
C.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Li
,
Y. T.
,
Wei
,
D. Q.
,
Fan
,
Z.
,
Tang
,
X. W.
, and
Zhu
,
Z. R.
,
2019
, “
Stiffness Performance Index Based Posture and Feed Orientation Optimization in Robotic Milling Process
,”
Robot. Comput. Integr. Manuf.
,
55
, pp.
29
40
.
36.
Fan
,
Q.
,
Gong
,
Z. Y.
,
Tao
,
B.
,
Gao
,
Y.
,
Yin
,
Z. P.
, and
Ding
,
H.
,
2021
, “
Base Position Optimization of Mobile Manipulators for Machining Large Complex Components
,”
Robot. Comput. Integr. Manuf.
,
70
, p.
102138
.
You do not currently have access to this content.