Abstract

Cutting force identification is critical to improving industrial robot performance and reducing machining vibration. However, most indirect identification methods of cutting force are not applicable since the modal parameters of the robotic milling system vary with the robot pose. This paper presents a novel pose-dependent method to identify the cutting force using the acceleration signal generated by robotic milling. First, the modal parameters at different machining points are employed as a training dataset to develop the Gaussian Process Regression (GPR) model. Next, the modal parameters predicted by the GPR model are employed to optimize the cutting force estimation based on the minimum variance unbiased estimate method. Then, the Kalman filter method is employed to update the covariance matrix of the cutting force identification error and the state estimation error. Lastly, the effectiveness of the proposed method is verified with robotic milling experiments, and the results show that the identification error and time are acceptable under the condition of variable robot pose.

References

1.
Nguyen
,
V.
,
Johnson
,
J.
, and
Melkote
,
S.
,
2020
, “
Active Vibration Suppression in Robotic Milling Using Optimal Control
,”
Int. J. Mach. Tools Manuf.
,
152
, p.
103541
.
2.
Zaeh
,
M. F.
,
Schnoes
,
F.
,
Obst
,
B.
, and
Hartmann
,
D.
,
2020
, “
Combined Offline Simulation and Online Adaptation Approach for the Accuracy Improvement of Milling Robots
,”
CIRP Ann.
,
69
, pp.
337
340
.
3.
Abele
,
E.
,
Bauer
,
J.
,
Rothenbucher
,
S.
,
Stelzer
,
M.
, and
Strykv
,
O.
,
2008
, “
Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process
,”
Proceedings of the International Conference on Process Machine Interactions
,
Hannover, Germany
,
Sept. 3–4
, pp.
223
230
.
4.
Cao
,
H. R.
,
Zhang
,
X. W.
, and
Chen
,
X. F.
,
2017
, “
The Concept and Progress of Intelligent Spindles: A Review
,”
Int. J. Mach. Tools Manuf.
,
112
, pp.
21
52
.
5.
Aslan
,
D.
, and
Altintas
,
Y.
,
2018
, “
Prediction of Cutting Forces in Five-Axis Milling Using Feed Drive Current Measurements
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
833
844
.
6.
Chen
,
Y.
,
Tao
,
Y.
,
Hu
,
P.
,
Wu
,
L.
, and
Ju
,
B. F.
,
2021
, “
Self-Sensing of Cutting Forces in Diamond Cutting by Utilizing a Voice Coil Motor-Driven Fast Tool Servo
,”
Precis. Eng.
,
71
, pp.
178
186
.
7.
Kim
,
D.
, and
Jeon
,
D.
,
2011
, “
Fuzzy-Logic Control of Cutting Forces in CNC Milling Processes Using Motor Currents as Indirect Force Sensors
,”
Prec. Eng.
,
35
(
1
), pp.
143
152
.
8.
Albrecht
,
A.
,
Park
,
S. S.
,
Altintas
,
Y.
, and
Pritschow
,
G.
,
2005
, “
High Frequency Bandwidth Cutting Force Measurement in Milling Using Capacitance Displacement Sensors
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
993
1008
.
9.
Wan
,
M.
,
Yuan
,
H.
, and
Feng
,
J.
,
2017
, “
Industry-Oriented Method for Measuring the Cutting Forces Based on the Deflections of Tool Shank
,”
Int. J. Mech. Sci.
,
130
, pp.
315
323
.
10.
Wang
,
C. X.
,
Zhang
,
X. W.
,
Qiao
,
B. J.
, and
Chen
,
X. F.
,
2018
, “
Milling Force Identification From Acceleration Signals Using Regularization Method Based on TSVD in Peripheral Milling
,”
8th CIRP Conference on High Performance Cutting
,
Budapest, Hungary
,
June 25–27
.
11.
Wang
,
C. X.
,
Zhang
,
X. W.
,
Qiao
,
B. J.
,
Cao
,
H. R.
, and
Chen
,
X. F.
,
2019
, “
Dynamic Force Identification in Peripheral Milling Based on CGLS Using Filtered Acceleration Signals and Averaged Transfer Functions
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
064501
.
12.
Gregory
,
W. V.
,
Dominique
,
A. R.
, and
Gregory
,
M. C.
,
2022
, “
Real-Time Estimation of Cutting Forces via Physics-Inspired Data-Driven Model
,”
CIRP Ann.
,
71
(
1
), pp.
317
320
.
13.
Zhou
,
J.
,
Mao
,
X. Y.
,
Liu
,
H. Q.
,
Li
,
B.
, and
Peng
,
Y. L.
,
2018
, “
Prediction of Cutting Force in Milling Process Using Vibration Signals of Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1–4
), pp.
965
984
.
14.
Mostaghimi
,
H.
,
Chaneel
,
I. P.
,
Kang
,
G.
,
Park
,
S. S.
, and
Lee
,
D. Y.
,
2021
, “
Reconstruction of Cutting Forces Through Fusion of Accelerometer and Spindle Current Signals
,”
J. Manuf. Process.
,
68
, pp.
990
1003
.
15.
Klimchik
,
A.
,
Bondarenko
,
D.
,
Pashkevich
,
A.
,
Briot
,
S.
, and
Furet
,
B.
,
2014
, “
Compliance Error Compensation in Robotic-Based Milling, Informatics in Control
,”
Informatics in Control, Automation and Robotics
,
Rome, Italy
.
16.
Cetinkunt
,
S.
, and
Book
,
W. J.
,
1989
, “
Symbolic Modeling and Dynamic Simulation of Robotic Manipulators With Compliant Links and Joints
,”
Robot. Comput. Integr. Manuf.
,
5
(
4
), pp.
301
310
.
17.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2005
, “
Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators
,”
IEEE Trans. Robot.
,
21
(
4
), pp.
554
564
.
18.
Deng
,
C. Y.
,
Miao
,
J. G.
,
Wei
,
B.
,
Feng
,
Y.
, and
Zhao
,
Y.
,
2018
, “
Evaluation of Machine Tools With Position-Dependent Milling Stability Based on Kriging Model
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
33
42
.
19.
Nguyen
,
V.
,
Cvitanic
,
T.
, and
Melkote
,
S.
,
2019
, “
Data-Driven Modeling of the Modal Properties of a Six-Degrees-of-Freedom Industrial Robot and its Application to Robotic Milling
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121006
.
20.
Rasmussen
,
C. E.
,
2004
,
Gaussian Processes in Machine Learning. Advanced Lectures on Machine Learning
,
Springer
,
New York
, pp.
63
71
.
21.
Pfrommer
,
B. G.
,
Cote
,
M.
,
Louie
,
S. G.
, and
Cohen
,
M. L.
,
1997
, “
Relaxation of Crystals With the Quasi-Newton Method
,”
J. Comput. Phys.
,
131
(
1
), pp.
233
240
.
22.
Khodabandeloo
,
B.
,
Melvin
,
D.
, and
Jo
,
H.
,
2017
, “
Model-Based Heterogeneous Data Fusion for Reliable Force Estimation in Dynamic Structures Under Uncertainties
,”
Sensors
,
17
(
11
), p.
2656
.
23.
Liu
,
Y.
,
Wang
,
L.
,
Qiu
,
Z. P.
, and
Chen
,
X.
,
2021
, “
A Dynamic Force Reconstruction Method Based on Modified Kalman Filter Using Acceleration Responses Under Multi-Source Uncertain Samples
,”
Mech. Syst. Sig. Process.
,
159
, p.
107761
.
24.
Gillijns
,
S.
, and
Moor
,
B. D.
,
2007
, “
Unbiased Minimum-Variance Input and State Estimation for Linear Discrete-Time Systems With Direct Feedthrough
,”
Automatica
,
43
(
5
), pp.
934
937
.
25.
Cen
,
L. J.
, and
Melkote
,
S. N.
,
2017
, “
Effect of Robot Dynamics on the Machining Forces in Robotic Milling
,”
45th SME North American Manufacturing Research Conference
,
LA, USA
.
26.
Gupta
,
K.
, and
Singh
,
S. P.
,
1998
, “
Damping Measurements in Fiber Reinforced Composite Rotors
,”
J. Sound Vib.
,
211
(
3
), pp.
513
520
.
You do not currently have access to this content.