Abstract

In the milling process, significant machining errors may occur due to the low stiffness of thin-walled parts. To reduce the cutting force-induced deformation in milling thin-walled parts such as blades, a cutter orientation optimization algorithm based on stiffness matching is proposed. The concept of maximum stiffness direction is put forward according to the phenomenon that different deformations are produced when applying forces with the same magnitude but in different directions. The stiffness of the in-process workpiece is obtained using the stiffness updating method. The cutter orientation optimization algorithm is presented to match the force with the maximum stiffness direction. The best cutter orientation is obtained by adopting the quantum particle swarms optimization algorithm at the key cutter location points, and then the cutter orientations of all cutter location points are obtained by the quaternion interpolation algorithm. The proposed deformation control method is verified on thin-walled blade milling experiments, and the experimental results show that the machining deformation of the blade with the optimized cutter orientation is reduced by about 36.51%, indicating that the proposed method can effectively reduce the machining deformation of the thin-walled parts.

References

1.
Ge
,
G.
,
Du
,
Z.
, and
Yang
,
J.
,
2020
, “
Rapid Prediction and Compensation Method of Cutting Force-Induced Error for Thin-Walled Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
5453
5462
.
2.
Ma
,
J.
,
Zhang
,
D.
,
Wu
,
B.
,
Luo
,
M.
, and
Liu
,
Y.
,
2016
, “
Stability Improvement and Vibration Suppression of the Thin-Walled Workpiece in Milling Process Via Magnetorheological Fluid Flexible Fixture
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1231
1242
.
3.
Wu
,
D. B.
,
Zhao
,
B.
,
Wang
,
H.
,
Zhang
,
K. Y.
, and
Yu
,
J.
,
2020
, “
Investigate on Computer-Aided Fixture Design and Evaluation Algorithm for Near-Net-Shaped Jet Engine Blade
,”
J. Manuf. Process.
,
54
, pp.
393
412
.
4.
Su
,
J. H.
,
Cai
,
Y.
,
Jiang
,
X. H.
,
Qiang
,
Y. Y.
,
Wang
,
Y. F.
, and
Liu
,
X.
,
2021
, “
Modeling of Stiffness Characteristic on Evaluating Clamping Scheme of Milling of Thin-Walled Parts
,”
Int. J. Adv. Manuf. Technol.
,
113
(
7–8
), pp.
1861
1872
.
5.
Ratchev
,
S.
,
Liu
,
S.
, and
Becker
,
A. A.
,
2005
, “
Error Compensation Strategy in Milling Flexible Thin-Wall Parts
,”
J. Mater. Process. Technol.
,
162
(
SI
), pp.
673
681
.
6.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2004
, “
Milling Error Prediction and Compensation in Machining of Low-Rigidity Parts
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1629
1641
.
7.
Chen
,
W. F.
,
Xue
,
J. B.
,
Tang
,
D. B.
,
Chen
,
H.
, and
Qu
,
S. P.
,
2009
, “
Deformation Prediction and Error Compensation in Multilayer Milling Processes for Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
859
864
.
8.
Kang
,
Y. G.
, and
Wang
,
Z. Q.
,
2013
, “
Two Efficient Iterative Algorithms for Error Prediction in Peripheral Milling of Thin-Walled Workpieces Considering the In-Cutting Chip
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
55
61
.
9.
Altintas
,
Y.
,
Tuysuz
,
O.
,
Habibi
,
M.
, and
Li
,
Z. L.
,
2018
, “
Virtual Compensation of Deflection Errors in Ball End Milling of Flexible Blades
,”
CIRP Ann.
,
67
(
1
), pp.
365
368
.
10.
Lim
,
T. S.
,
Lee
,
C. M.
,
Kim
,
S. W.
, and
Lee
,
D. W.
,
2002
, “
Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade
,”
J. Mater. Process. Technol.
,
130
, pp.
401
406
.
11.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
.
12.
Geng
,
L.
,
Liu
,
P. L.
, and
Liu
,
K.
,
2015
, “
Optimization of Cutter Posture Based on Cutting Force Prediction for Five-Axis Machining With Ball-End Cutters
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1289
1303
.
13.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2019
, “
Compensation of Deformation Errors in Five-Axis Flank Milling of Thin-Walled Parts Via Tool Path Optimization
,”
Precis. Eng.
,
55
, pp.
77
87
.
14.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
.
15.
Layegh
,
E.
,
Yigit
,
I. E.
, and
Lazoglu
,
I.
,
2015
, “
Analysis of Tool Orientation for 5-Axis Ball-End Milling of Flexible Parts
,”
CIRP Ann.
,
64
(
1
), pp.
97
100
.
16.
Huang
,
T.
,
Zhang
,
X.-M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Tool Orientation Planning in Milling With Process Dynamic Constraints: A Minimax Optimization Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111002
.
17.
Wang
,
J.
,
Ibaraki
,
S.
, and
Matsubara
,
A.
,
2017
, “
A Cutting Sequence Optimization Algorithm to Reduce the Workpiece Deformation in Thin-Wall Machining
,”
Precis. Eng.
,
50
, pp.
506
514
.
18.
Agarwal
,
A.
, and
Desai
,
K.
,
2021
, “
Rigidity Regulation Approach for Geometric Tolerance Optimization in End Milling of Thin-Walled Components
,”
ASME J. Manuf. Sci. Eng.
,
143
(
11
), p.
111006
.
19.
Ma
,
J. W.
,
He
,
G. Z.
,
Liu
,
Z.
,
Qin
,
F. Z.
,
Chen
,
S. Y.
, and
Zhao
,
X. X.
,
2018
, “
Instantaneous Cutting-Amount Planning for Machining Deformation Homogenization Based on Position-Dependent Rigidity of Thin-Walled Surface Parts
,”
J. Manuf. Process.
,
34
, pp.
401
411
.
20.
Yan
,
Q. H.
,
Luo
,
M.
, and
Tang
,
K.
,
2018
, “
Multi-axis Variable Depth-of-Cut Machining of Thin-Walled Workpieces Based on the Workpiece Deflection Constraint
,”
Comput. Aided Des.
,
100
, pp.
14
29
.
21.
Sun
,
Y. W.
, and
Jiang
,
S. L.
,
2018
, “
Predictive Modeling of Chatter Stability Considering Force-Induced Deformation Effect in Milling Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
135
, pp.
38
52
.
22.
Li
,
Z.-L.
,
Tuysuz
,
O.
,
Zhu
,
L.-M.
, and
Altintas
,
Y.
,
2018
, “
Surface Form Error Prediction in Five-Axis Flank Milling of Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
128
, pp.
21
32
.
23.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Frequency Domain Updating of Thin-Walled Workpiece Dynamics Using Reduced Order Substructuring Method in Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071013
.
24.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
.
25.
Wang
,
J. R.
,
Quan
,
L. L.
, and
Tang
,
K.
,
2020
, “
A Prediction Method Based on the Voxel Model and the Finite Cell Method for Cutting Force-Induced Deformation in the Five-Axis Milling Process
,”
Comput. Methods Appl. Mech. Eng.
,
367
, p.
113110
.
26.
Li
,
W. T.
,
Wang
,
L. P.
, and
Yu
,
G.
,
2021
, “
Force-Induced Deformation Prediction and Flexible Error Compensation Strategy in Flank Milling of Thin-Walled Parts
,”
J. Mater. Process. Technol.
,
297
, p.
117258
.
27.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
28.
Xi
,
X.
,
Cai
,
Y.
,
Gao
,
Y.
, and
Gao
,
C.
,
2020
, “
An Analytical Method to Calculate Cutter-Workpiece Engagement Based on Arc-Surface Intersection Method
,”
Int. J. Adv. Manuf. Technol.
,
107
(
1–2
), pp.
935
944
.
29.
Xi
,
X.
,
Cai
,
Y.
,
Wang
,
H.
, and
Zhao
,
D.
,
2021
, “
A Prediction Model of the Cutting Force-Induced Deformation While Considering the Removed Material Impact
,”
Int. J. Adv. Manuf. Technol.
,
119
(
3–4
), pp.
1579
1594
.
30.
Sun
,
J.
,
Xu
,
W.
, and
Liu
,
J.
,
2005
, “
Parameter Selection of Quantum-Behaved Particle Swarm Optimization
,”
Proceedings of the International Conference on Natural Computation
,
Changsha, China
,
Aug. 27–29
, Vol. 3612, pp.
543
552
.
You do not currently have access to this content.