Abstract

The increasing industry energy demand highlights the urgency of demand response management, while the emerging smart manufacturing technologies pave the way for the implementation of real-time price (RTP)-based demand response management towards sustainable manufacturing. The demand response management requires scheduling of manufacturing systems based on RTP predictions, and thus the prediction quality can directly alter the effectiveness of demand response. However, since the general price prediction algorithms and prediction evaluation metrics are not specifically designed for RTP in demand response problems, a good RTP prediction obtained and evaluated by these algorithms and metrics may not be suitable for demand response scheduling. Therefore, in this study, the relationships between the effectiveness of demand response for manufacturing systems and evaluation results from six commonly used metrics are investigated. Meanwhile, a new metric called k-peak distance (KPD), considering the characteristics of the demand response problem, is proposed and compared with the other six metrics. Furthermore, an encoder-decoder long short-term memory recurrent neural network with KPD is proposed to provide better RTP prediction for manufacturing demand response problems. The case studies indicate that the proposed KPD metric shows a 1.8–3.6 times higher correlation with the demand response effectiveness compared to the other metrics. In addition, the production schedule based on the RTP prediction obtained from the proposed algorithm can improve the effectiveness of demand response by 23.4% on average.

References

1.
Cai
,
W.
,
Lai
,
K.
,
Liu
,
C.
,
Wei
,
F.
,
Ma
,
M.
,
Jia
,
S.
,
Jiang
,
Z.
, and
Lv
,
L.
,
2019
, “
Promoting Sustainability of Manufacturing Industry Through the Lean Energy-Saving and Emission-Reduction Strategy
,”
Sci. Total Environ.
,
665
, pp.
23
32
.
2.
Yong
,
J. Y.
,
Yusliza
,
M.
,
Ramayah
,
T.
,
Chiappetta Jabbour
,
C. J.
,
Sehnem
,
S.
, and
Mani
,
V.
,
2020
, “
Pathways Towards Sustainability in Manufacturing Organizations: Empirical Evidence on the Role of Green Human Resource Management
,”
Bus. Strategy Environ.
,
29
(
1
), pp.
212
228
.
3.
Machado
,
C. G.
,
Winroth
,
M. P.
, and
Ribeiro da Silva
,
E. H. D.
,
2020
, “
Sustainable Manufacturing in Industry 4.0: An Emerging Research Agenda
,”
Int. J. Prod. Res.
,
58
(
5
), pp.
1462
1484
.
4.
Jordehi
,
A. R.
,
2019
, “
Optimisation of Demand Response in Electric Power Systems, A Review
,”
Renew. Sustain. Energy Rev.
,
103
, pp.
308
319
.
5.
Chahkandi Nejad
,
H.
,
Tavakoli
,
S.
,
Ghadimi
,
N.
,
Korjani
,
S.
,
Nojavan
,
S.
, and
Pashaei-Didani
,
H.
,
2019
, “
Reliability Based Optimal Allocation of Distributed Generations in Transmission Systems Under Demand Response Program
,”
Electr. Power Syst. Res.
,
176
, p.
105952
.
6.
He
,
L.
,
Lu
,
Z.
,
Geng
,
L.
,
Zhang
,
J.
,
Li
,
X.
, and
Guo
,
X.
,
2020
, “
Environmental Economic Dispatch of Integrated Regional Energy System Considering Integrated Demand Response
,”
Int. J. Electr. Power Energy Syst.
,
116
, p.
105525
.
7.
U.S. Energy Information Administration
,
2020
, “Annual Electric Power Industry Report.”
8.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
9.
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Haapala
,
K. R.
,
Cooper
,
D.
,
Zhao
,
F.
, and
Huang
,
A.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110806
.
10.
Yun
,
L.
,
Li
,
L.
, and
Ma
,
S.
,
2022
, “
Demand Response for Manufacturing Systems Considering the Implications of Fast-Charging Battery Powered Material Handling Equipment
,”
Appl. Energy
,
310
, p.
118550
.
11.
Smith
,
C. B.
, and
Parmenter
,
K. E.
,
2016
, “Understanding Utility Rates and Programs,”
Energy Management Principles
,
C. B.
Smith
, and
K. E.
Parmenter
, eds., 2nd ed.,
Elsevier
,
New York
, pp.
59
67
.
12.
Hu
,
M.
,
Xiao
,
J.-W.
,
Cui
,
S.-C.
, and
Wang
,
Y.-W.
,
2018
, “
Distributed Real-Time Demand Response for Energy Management Scheduling in Smart Grid
,”
Int. J. Electr. Power Energy Syst.
,
99
, pp.
233
245
.
13.
Zhang
,
H.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2017
, “
Scheduling of a Single Flow Shop for Minimal Energy Cost Under Real-Time Electricity Pricing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
014502
.
14.
Yun
,
L.
,
Xiao
,
M.
, and
Li
,
L.
,
2022
, “
Vehicle-to-Manufacturing (V2M) System: A Novel Approach to Improve Energy Demand Flexibility for Demand Response Towards Sustainable Manufacturing
,”
Appl. Energy
,
323
, p.
119552
.
15.
Dababneh
,
F.
,
Atanasov
,
M.
,
Sun
,
Z.
, and
Li
,
L.
,
2015
, “
Simulation-Based Electricity Demand Response for Combined Manufacturing and HVAC System Towards Sustainability
,”
Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
,
Charlotte, NC
,
June 8–12
.
16.
Cui
,
H.
, and
Zhou
,
K.
,
2018
, “
Industrial Power Load Scheduling Considering Demand Response
,”
J. Clean. Prod.
,
204
, pp.
447
460
.
17.
Yun
,
L.
,
Ma
,
S.
,
Li
,
L.
, and
Liu
,
Y.
,
2022
, “
CPS-Enabled and Knowledge-Aided Demand Response Strategy for Sustainable Manufacturing
,”
Adv. Eng. Inform.
,
52
, p.
101534
.
18.
Huang
,
X.
,
Hong
,
S. H.
, and
Li
,
Y.
,
2017
, “
Hour-Ahead Price Based Energy Management Scheme for Industrial Facilities
,”
IEEE Trans. Ind. Inform.
,
13
(
6
), pp.
2886
2898
.
19.
Lu
,
R.
,
Bai
,
R.
,
Huang
,
Y.
,
Li
,
Y.
,
Jiang
,
J.
, and
Ding
,
Y.
,
2021
, “
Data-Driven Real-Time Price-Based Demand Response for Industrial Facilities Energy Management
,”
Appl. Energy
,
283
, p.
116291
.
20.
Keles
,
D.
,
Scelle
,
J.
,
Paraschiv
,
F.
, and
Fichtner
,
W.
,
2016
, “
Extended Forecast Methods for Day-Ahead Electricity Spot Prices Applying Artificial Neural Networks
,”
Appl. Energy
,
162
, pp.
218
230
.
21.
Wang
,
Y.
, and
Li
,
L.
,
2013
, “
Time-of-Use Based Electricity Demand Response for Sustainable Manufacturing Systems
,”
Energy
,
63
, pp.
233
244
.
22.
Li
,
Y.-C.
, and
Hong
,
S. H.
,
2017
, “
Real-Time Demand Bidding for Energy Management in Discrete Manufacturing Facilities
,”
IEEE Trans. Ind. Electron.
,
64
(
1
), pp.
739
749
.
23.
Tang
,
J.
,
Scellato
,
S.
,
Musolesi
,
M.
,
Mascolo
,
C.
, and
Latora
,
V.
,
2010
, “
Small-World Behavior in Time-Varying Graphs
,”
Phys. Rev. E
,
81
(
5
), p.
055101
.
24.
WangDa
,
D.
,
2003
, “
Pattern Distance of Time Series
,”
WIT Trans. Inf. Commun. Technol.
,
29
, p.
10
.
25.
ComEd—An Exelon Company, “Check Prices. Shift Usage. Reduce Electricity Bill,” [Online], https://hourlypricing.comed.com/live-prices/, Accessed September 20, 2021.
You do not currently have access to this content.