Abstract

Manufacturing or repairing parts on-site, high geometric freedom, and feedstock efficiency have long been regarded as nascent capabilities of additive manufacturing (AM) technologies. Researchers aim to adopt these capabilities for the future of space exploration, and polymer AM demonstrations in space were achieved in 2014; however, methods to process metals and other materials are needed. This paper provides a comprehensive review of AM research tested on reduced-gravity platforms from academia and industry across the globe. In addition, complementary processes and technologies under development are summarized. Reports from the literature are categorized by established AM process terminology and processed material. Lastly, alternatives to enabling metal AM in space are discussed, and knowledge gaps are presented.

References

1.
Owens
,
A.
, and
De Weck
,
O.
,
2016
, “
Systems Analysis of In-Space Manufacturing Applications for the International Space Station and the Evolvable Mars Campaign
,”
AIAA SPACE 2016
,
Long Beach, CA
,
Sept. 13–16
, p.
5394
.
2.
Vickers
,
J.
,
2020
, “
NASA’s Additive Manufacturing Technology-Driving Exploration
,”
Lunar Excavation, Manufacturing, and Construction Challenge-Ideation Workshop
, Document ID 20200001736.
3.
Lotz
,
C.
,
Frobose
,
T.
,
Wanner
,
A.
,
Overmeyer
,
L.
, and
Ertmer
,
W.
,
2017
, “
Einstein-Elevator: A New Facility for Research From µg to 5g
,”
Gravitational Space Res.
,
5
(
2
), pp.
11
27
.
4.
Lotz
,
C.
,
Wessarges
,
Y.
,
Hermsdorf
,
J.
,
Ertmer
,
W.
, and
Overmeyer
,
L.
,
2018
, “
Novel Active Driven Drop Tower Facility for Microgravity Experiments Investigating Production Technologies on the Example of Substrate-Free Additive Manufacturing
,”
Adv. Space Res.
,
61
(
8
), pp.
1967
1974
.
5.
Rosenthal
,
B. N.
,
Glasgow
,
T. K.
,
Black
,
R. E.
, and
Elleman
,
D. D.
,
1987
, “
Research Opportunities in Microgravity Science and Applications During Shuttle Hiatus
,” https://ntrs.nasa.gov/citations/19870007484
6.
Meseguer
,
J.
,
Sanz-Andrés
,
A.
,
Pérez-Grande
,
I.
,
Pindado
,
S.
,
Franchini
,
S.
, and
Alonso
,
G.
,
2014
, “
Surface Tension and Microgravity
,”
Eur. J. Phys.
,
35
(
5
), p.
055010
.
7.
Pletser
,
V.
,
2020
,
Preparation of Space Experiments
,
BoD–Books on Demand
.
8.
Beysens
,
D. A.
, and
van Loon
,
J. J.
,
2015
,
Generation and Applications of Extra-Terrestrial Environments on Earth
,
River Publishers
,
Aalborg
.
9.
Matthews
,
K. R.
,
Motiwala
,
S. A.
,
Edberg
,
D. L.
, and
Garcia-Llama
,
E.
,
2012
, “
Flight Mechanics Experiment Onboard NASA’S Zero Gravity Aircraft
,”
J. Technol. Sci. Educ.
,
2
(
1
), pp.
4
12
.
10.
Sabbatini
,
M.
,
2014
, “
ESA User Guide to Low Gravity Platforms
,”
Directorate of Human Spaceflight and Operations
, Noordwijk, The Netherlands.
11.
Ferranti
,
F.
,
Del Bianco
,
M.
, and
Pacelli
,
C.
,
2020
, “
Advantages and Limitations of Current Microgravity Platforms for Space Biology Research
,”
Appl. Sci.
,
11
(
1
), p.
68
.
12.
Duan
,
E.
, and
Long
,
M.
, eds.,
2019
,
Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite
,
Springer
,
New York
.
13.
Soares
,
C.
,
Mikatarian
,
R.
, and
Schmidl
,
D.
,
2005
, “
Natural and Induced Space Environments Effects on the International Space Station
,”
56th International Astronautical Congress
.
14.
Prater
,
T.
,
2020
, “
In-Space Manufacturing (ISM): Make It, Don’t Take It!
,” https://ntrs.nasa.gov/api/citations/20200001731/downloads/20200001731.pdf, Accessed July 22, 2021.
15.
Newman
,
D. J.
,
2007
, “
Life in Extreme Environments: How Will Humans Perform on Mars?
,”
Gravitational Space Res.
,
13
(
2
), pp.
35
47
.
16.
Thirsk
,
R.
,
Kuipers
,
A.
,
Mukai
,
C.
, and
Williams
,
D.
,
2009
, “
The Space-Flight Environment: The International Space Station and Beyond
,”
CMAJ
,
180
(
12
), pp.
1216
1220
.
17.
Dorsey
,
J.
,
Doggett
,
W.
,
McGlothin
,
G.
,
Alexandrov
,
N.
,
Allen
,
B. D.
,
Chandarana
,
M.
,
Cooper
,
J.
,
Vie
,
L. L.
,
Neilan
,
J.
,
Puig Navarro
,
J.
, and
Waltz
,
W.
,
2021
, “
State of the Profession: NASA Langley Research Center Capabilities/Technologies for Autonomous In-Space Assembly and Modular Persistent Assets
,”
Bull. Am. Astron. Soc.
,
53
(
4
), p.
389
.
18.
Moraguez
,
M. T.
,
2018
, “
Technology Development Targets for Commercial In-Space Manufacturing
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
19.
NASA’s Exploration & In-Space Services, OSAM-1 Mission: On-orbit Servicing, Assembly, and Manufacturing 1, https://nexis.gsfc.nasa.gov/OSAM-1.html, Accessed July 10, 2021.
20.
Boyd
,
I.
,
2017
, “
On Orbit Manufacturing and Assembly of Spacecraft
,” Technical Report, Institute for Defense Analyses.
21.
Piskorz
,
D.
, and
Jones
,
K. L.
,
2018
,
On-Orbit Assembly of Space Assets: A Path to Affordable and Adaptable Space Infrastructure
,
The Aerospace Corporation
,
El Segundo
.
22.
Clinton, Jr
,
R.
,
Werkheiser
,
N.
,
Prater
,
T.
,
Ledbetter
,
F.
,
Laughinghouse
,
T.
,
Adams
,
C.
,
Clinton
,
T.
,
Shestople
,
P.
, and
Lymer
,
J. D.
,
2019
, AM in Space: ISM and IRMA NASA Initiatives, https://ntrs.nasa.gov/citations/20190005001, Accessed July 10, 2021.
23.
Lymer
,
J.
,
Doggett
,
W. R.
,
Dorsey
,
J.
,
Bowman
,
L.
,
Tadros
,
A.
,
Hollenstein
,
B.
,
King
,
B.
,
Emerick
,
K.
,
Hanson
,
M.
, and
Boccio
,
J.
,
2016
, “
Commercial Application of In-Space Assembly
,”
AIAA SPACE 2016
,
Long Beach, CA
,
Sept. 13–16
, p.
5236
.
24.
Sacksteder
,
K.
, and
Sanders
,
G.
,
2007
, “
In-Situ Resource Utilization for Lunar and Mars Exploration
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
, p.
345
.
25.
Rice
,
E.
, and
Gustafson
,
R.
,
2000
, “
Review of Current Indigenous Space Resource Utilization (ISRU) Research and Development
,”
38th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, p.
1057
.
26.
Schollharnmer
,
F.
,
1967
, “
Hand-Held Electron Beam Gun for In-Space Welding
,”
4th Space Congress Proceedings vol. 5
,
Cocoa Beach, FL
,
Apr. 3
.
27.
National Research Council
,
2000
,
Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies
,
National Academies Press
,
Washington, DC
.
28.
Wilson
,
M. L.
,
MacConochie
,
I. O.
, and
Johnson
,
G. S.
,
1987
, “
Potential for On-Orbit Manufacture of Large Space Structures Using the Pultrusion Process
,” NASA Technical Memorandum,
Hampton, VA
,
Jan. 1
.
29.
Watson
,
K.
,
Petersen
,
D.
, and
Crockett
,
R.
,
1999
, “
Application of Solid Freeform Fabrication Technology to NASA Exploration Missions
,”
Proceedings From the SFF Symposium
,
Austin, TX
,
Aug. 9–11
, pp.
857
864
.
30.
Wohlers
,
T.
, and
Gornet
,
T.
,
2014
, “
History of Additive Manufacturing
,”
Wohlers Rep.
,
24
, p.
118
.
31.
Skomorohov
,
R.
,
Welch
,
C.
, and
Hein
,
A. M.
,
2016
, “
In-Orbit Spacecraft Manufacturing: Near-Term Business Cases Individual Project Report
,”
Research Report
,
International Space University/Initiative for Interstellar Studies
.
32.
Clinton
,
R.
, Jr.
,
2016
, “
NASA’s In Space Manufacturing Initiative For Exploration-Why, How, What!: Manufacturing Problem Prevention Program
,” https://ntrs.nasa.gov/api/citations/20160013275/downloads/20160013275.pdf.
33.
Clinton
,
R.
,
Prater
,
T.
,
Werkheiser
,
N.
,
Morgan
,
K.
, and
Ledbetter
,
F. E.
,
2018
, “
NASA Additive Manufacturing Initiatives for Deep Space Human Exploration
,”
69th International Astronautical Congress (IAC)
,
Bremen, Germany
,
Oct. 1–5
.
34.
Ghidini
,
T.
,
2013
, “
An Overview of Current AM Activities at the European Space Agency
,”
3D Printing & Additive Manufacturing—Industrial Applications Global Summit
,
London, UK
.
35.
Zhang
,
Y. Y.
,
Jin
,
Z. J.
, and
Zhang
,
W.
,
2020
, “Application of 3d Printing in Future Manned Space Exploration,”
Materials Science Forum
,
Y.
Zhao
, ed., Vol. 982,
Trans Tech Publ.
, pp.
92
97
.
36.
Hurley
,
B.
, “
3D Printing and Space Exploration: How NASA Will Use Additive Manufacturing
,” https://www.techbriefs.com/component/content/article/tb/stories/blog/35871.
37.
Bean
,
Q.
,
Cooper
,
K.
,
Edmunson
,
J.
,
Johnston
,
M.
, and
Werkheiser
,
M.
,
2015
, “
International Space Station (ISS) 3d Printer Performance and Material Characterization Methodology
,” https://ntrs.nasa.gov/citations/20150016234.
38.
Gelinsky
,
M.
,
2020
, “
Latest Advances of Bioprinting in Space: An Interview With Michael Gelinsky
,”
J. 3D Print. Med.
,
4
(
1
), pp.
1
4
.
39.
Kading
,
B.
, and
Straub
,
J.
,
2015
, “
Utilizing In-Situ Resources and 3d Printing Structures for a Manned Mars Mission
,”
Acta Astronaut.
,
107
, pp.
317
326
.
40.
Mankins
,
J. C.
,
1995
, “
Technology Readiness Levels
,”
White Paper
,
April
6
, p.
1995
.
41.
National Research Council
,
2014
,
3D Printing in Space
,
National Academies Press
,
Washington, DC
.
42.
Dordlofva
,
C.
,
Lindwall
,
A.
,
Törlind
,
P.
,
2016
, “
Opportunities and Challenges for Additive Manufacturing in Space Applications
,”
DS 85-1: Proceedings of Nord Design 2016
,
Trondheim, Norway
,
Aug. 10–12
, Vol. 1, pp.
401
410
.
43.
Marc Abi-Fadel
,
M.
,
Al Harbi
,
M.
,
Chafena
,
M.
,
Chen
,
T.
,
Farias
,
A.
,
Halpina
,
S.
,
Jiang
,
Z.
, et al
,
2019
, “
Leveraging Additive Manufacturing to Enable Deep Space Crewed Missions
,”
70th International Astronautical Congress (IAC)
,
Washington, DC
,
Oct. 21–25
.
44.
Moraguez
,
M.
, and
de Weck
,
O.
,
2019
, “
Suitability of Manufacturing Processes for In-Space Manufacturing of Spacecraft Components
,”
70th International Astronautical Congress (IAC)
,
Washington, DC
,
Oct. 21–25
45.
Moraguez
,
M.
, and
de Weck
,
O.
,
2020
, “
Benefits of In-Space Manufacturing Technology Development for Human Spaceflight
,”
2020 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 7–14
,
IEEE
, pp.
1
11
.
46.
Sacco
,
E.
, and
Moon
,
S. K.
,
2019
, “
Additive Manufacturing for Space: Status and Promises
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4123
4146
.
47.
Shevtsova
,
V.
,
Lyubimova
,
T.
,
Saghir
,
Z.
,
Melnikov
,
D.
,
Gaponenko
,
Y.
,
Sechenyh
,
V.
,
Legros
,
J. C.
, and
Mialdun
,
A.
,
2011
, “
Ividil: On-Board g-Jitters and Diffusion Controlled Phenomena
,”
J. Phys.: Conf. Ser.
,
327
, p.
012031
.
48.
Thomas
,
V.
,
Prasad
,
N.
, and
Reddy
,
C. A. M.
,
2000
, “
Microgravity Research Platforms—A Study
,”
Curr. Sci.
,
79
(
3
), pp.
336
340
.
49.
Brooks
,
J.
,
Reavis
,
J.
,
Medwood
,
R.
,
Stalcup
,
T.
,
Meisel
,
M.
,
Steinberg
,
E.
,
Arnowitz
,
L.
,
Stover
,
C.
, and
Perenboom
,
J.
,
2000
, “
New Opportunities in Science, Materials, and Biological Systems in the Low-Gravity (Magnetic Levitation) Environment
,”
J. Appl. Phys.
,
87
(
9
), pp.
6194
6199
.
50.
Lemmer
,
K.
,
2017
, “
Propulsion for Cubesats
,”
Acta Astronaut.
,
134
, pp.
231
243
.
51.
Pletser
,
V.
,
2020
, “Aircraft Parabolic Flights: A Gateway to Orbital Microgravity and Extra-Terrestrial Planetary Gravities,”
Preparation of Space Experiments
,
V.
Pletser
, ed.,
IntechOpen
.
52.
Kumar
,
L. J.
, and
Nair
,
C. K.
,
2017
, “Current Trends of Additive Manufacturing in the Aerospace Industry,”
Advances in 3D Printing & Additive Manufacturing Technologies
,
D.
Wimpenny
,
P. L.
Pandey
, and
J.
Kumar
, eds.,
Springer
,
New York
, pp.
39
54
.
53.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.
54.
Song
,
Y.
,
Yan
,
Y.
,
Zhang
,
R.
,
Xu
,
D.
, and
Wang
,
F.
,
2002
, “
Manufacture of the Die of an Automobile Deck Part Based on Rapid Prototyping and Rapid Tooling Technology
,”
J. Mater. Process. Technol.
,
120
(
1–3
), pp.
237
242
.
55.
Kumar
,
R.
,
Kumar
,
M.
, and
Chohan
,
J. S.
,
2021
, “
The Role of Additive Manufacturing for Biomedical Applications: A Critical Review
,”
J. Manuf. Process.
,
64
, pp.
828
850
.
56.
ASTM, ISO
,
2015
,
ASTM52900-15 Standard Terminology for Additive Manufacturing—General Principles—Terminology
,
ASTM International
,
West Conshohocken, PA
.
57.
Bin Ishak
,
I.
,
Fisher
,
J.
, and
Larochelle
,
P.
,
2016
, “
Robot Arm Platform for Additive Manufacturing Using Multiplane Toolpaths
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
American Society of Mechanical Engineers
, Vol. 50152, p.
V05AT07A063
.
58.
Padhy
,
S. K.
,
1992
, “
On the Dynamics of Scara Robot
,”
Rob. Auton. Syst.
,
10
(
1
), pp.
71
78
.
59.
Carp-Ciocardia
,
D.
,
2003
, “
Dynamic Analysis of Clavel’s Delta Parallel Robot
,”
2003 IEEE International Conference on Robotics and Automation
,
IEEE
, Vol. 3, pp.
4116
4121
, Cat. No. 03CH37422.
60.
Deshpande
,
S. P.
,
Kulkarni
,
S.
,
Shah
,
S.
, and
Irwin
,
J.
,
2019
, “
Developing an Open Source, Inexpensive, Large-Scale Polar Configuration 3d Printer
,”
Int. J. Eng. Res. Innov.
,
11
(
2
), pp.
13
22
.
61.
Gibson
,
I.
,
Rosen
,
D. W.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
, Vol. 17,
Springer
,
New York
.
62.
Yang
,
L.
,
Hsu
,
K.
,
Baughman
,
B.
,
Godfrey
,
D.
,
Medina
,
F.
,
Menon
,
M.
, and
Wiener
,
S.
,
2017
,
Additive Manufacturing of Metals: The Technology, Materials, Design and Production
,
Springer
,
New York
.
63.
Srivastava
,
M.
,
Rathee
,
S.
,
Maheshwari
,
S.
, and
Kundra
,
T.
,
2019
,
Additive Manufacturing: Fundamentals and Advancements
,
CRC Press
,
Boca Raton, FL
.
64.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
65.
Bian
,
L.
,
Shamsaei
,
N.
, and
Usher
,
J. M.
,
2017
,
Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimization, and Control of Mechanical Properties
,
CRC Press
,
Boca Raton, FL
.
66.
Chua
,
C. K.
,
Wong
,
C. H.
, and
Yeong
,
W. Y.
,
2017
,
Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing
,
Academic Press
,
London
.
67.
Lim
,
J. X.-Y.
, and
Pham
,
Q.-C.
,
2021
, “
Automated Post-Processing of 3d-Printed Parts: Artificial Powdering for Deep Classification and Localisation
,”
Virtual Phys. Prototyp.
,
16
(
3
), pp.
333
346
.
68.
Nelaturi
,
S.
,
Behandish
,
M.
,
Mirzendehdel
,
A. M.
, and
de Kleer
,
J.
,
2019
, “
Automatic Support Removal for Additive Manufacturing Post Processing
,”
Comput. Aided Des.
,
115
, pp.
135
146
.
69.
Becker
,
P.
,
Eichmann
,
C.
,
Ronnau
,
A.
, and
Dillmann
,
R.
,
2020
, “
Automation of Post-Processing in Additive Manufacturing With Industrial Robots
,”
2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)
,
Hong Kong, China
,
Aug. 20–21
,
IEEE
, pp.
1578
1583
.
70.
Standard
,
A.
,
2014
,
D638 (2014) Standard Test Method for Tensile Properties of Plastics
,
ASTM International
,
West Conshohocken, PA
.
71.
Specimens
,
P.
,
2014
,
Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
,
ASTM International
,
West Conshohocken, PA
.
72.
For Testing, A. S., and Materials
,
2015
, “
Standard Test Method for Compressive Properties of Rigid Plastics
,” Report D695-15.
73.
Charalampous
,
P.
,
Kostavelis
,
I.
, and
Tzovaras
,
D.
,
2020
, “
Non-destructive Quality Control Methods in Additive Manufacturing: A Survey
,”
Rapid Prototyp. J.
,
26
(
4
), pp.
777
790
.
74.
Ding
,
D.
,
Shen
,
C.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Larkin
,
N.
, and
van Duin
,
S.
,
2016
, “
Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System From CAD to Finished Part
,”
Comput. Aided Des.
,
73
, pp.
66
75
.
75.
Urhal
,
P.
,
Weightman
,
A.
,
Diver
,
C.
, and
Bartolo
,
P.
,
2019
, “
Robot Assisted Additive Manufacturing: A Review
,”
Robot. Comput. Integr. Manuf.
,
59
, pp.
335
345
.
76.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2020
, “
Expanding Capabilities of Additive Manufacturing Through Use of Robotics Technologies: A Survey
,”
Addit. Manuf.
,
31
, p.
100933
.
77.
Wu
,
C.
,
Dai
,
C.
,
Fang
,
G.
,
Liu
,
Y.-J.
, and
Wang
,
C. C.
,
2017
, “
Robofdm: A Robotic System for Support-Free Fabrication Using FDM
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
1175
1180
.
78.
Shembekar
,
A. V.
,
Yoon
,
Y. J.
,
Kanyuck
,
A.
, and
Gupta
,
S. K.
,
2018
, “
Trajectory Planning for Conformal 3d Printing Using Non-Planar Layers
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, Vol.
51722
, p.
V01AT02A026
.
79.
Bonaccorso
,
F.
,
Cantelli
,
L.
, and
Muscato
,
G.
,
2011
, “
An Arc Welding Robot Control for a Shaped Metal Deposition Plant: Modular Software Interface and Sensors
,”
IEEE Trans. Ind. Electron.
,
58
(
8
), pp.
3126
3132
.
80.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing (WAAM)
,”
Robot. Comput. Integr. Manuf.
,
31
, pp.
101
110
.
81.
Joosten
,
S.
,
2015
, “
Printing a Stainless Steel Bridge: An Exploration of Structural Properties of Stainless Steel Additive Manufactures for Civil Engineering Purposes
,” Master's thesis, Delft University of Technology, Delft, Netherlands.
82.
Chen
,
Y.
,
Zhou
,
C.
, and
Lao
,
J.
,
2011
, “
A Layerless Additive Manufacturing Process Based on CNC Accumulation
,”
Rapid Prototyp. J.
,
17
(
3
), pp.
218
227
.
83.
Pan
,
Y.
,
Zhou
,
C.
,
Chen
,
Y.
, and
Partanen
,
J.
,
2014
, “
Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031007
.
84.
Stevens
,
A. G.
,
Oliver
,
C. R.
,
Kirchmeyer
,
M.
,
Wu
,
J.
,
Chin
,
L.
,
Polsen
,
E. S.
,
Archer
,
C.
,
Boyle
,
C.
,
Garber
,
J.
, and
Hart
,
A. J.
,
2016
, “
Conformal Robotic Stereolithography
,”
3D Print. Addit. Manuf.
,
3
(
4
), pp.
226
235
.
85.
DebRoy
,
T.
,
Wei
,
H.
,
Zuback
,
J.
,
Mukherjee
,
T.
,
Elmer
,
J.
,
Milewski
,
J.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
86.
Liu
,
Z.
,
Loh
,
N.
,
Tor
,
S.
, and
Khor
,
K.
,
2002
, “
Characterization of Powder Injection Molding Feedstock
,”
Mater. Charact.
,
49
(
4
), pp.
313
320
.
87.
Gonzalez-Gutiérrez
,
J.
,
Stringari
,
G. B.
, and
Emri
,
I.
,
2012
, “
Powder Injection Molding of Metal and Ceramic Parts
,”
Some Crit. Issues Injection Molding
, pp.
65
88
.
88.
Gonzalez-Gutierrez
,
J.
,
Duretek
,
I.
,
Kukla
,
C.
,
Poljšak
,
A.
,
Bek
,
M.
,
Emri
,
I.
, and
Holzer
,
C.
,
2016
, “
Models to Predicť the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation
,”
Metals
,
6
(
6
), p.
129
.
89.
Wu
,
G.
,
Langrana
,
N. A.
,
Rangarajan
,
S.
,
McCuiston
,
R.
,
Sadanji
,
R.
,
Danforth
,
S.
, and
Safari
,
A.
,
1999
, “
Fabrication of Metal Components Using Fdmet: Fused Deposition of Metals
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 9–11
, pp.
775
782
.
90.
Geiger
,
M.
,
Greul
,
M.
,
Steger
,
W.
, and
Sindel
,
M.
,
1994
, “
Multiphase Jet Solidification—a New Process Towards Metal Prototypes and a New Data Interface
,”
1994 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
9
16
.
91.
Ruscitti
,
A.
,
Tapia
,
C.
, and
Rendtorff
,
N.
,
2020
, “
A Review on Additive Manufacturing of Ceramic Materials Based on Extrusion Processes of Clay Pastes
,”
Ceramica
,
66
(
380
), pp.
354
366
.
92.
Kukla
,
C.
,
Gonzalez-Gutierrez
,
J.
,
Duretek
,
I.
,
Schuschnigg
,
S.
, and
Holzer
,
C.
,
2017
, “
Effect of Particle Size on the Properties of Highly-Filled Polymers for Fused Filament Fabrication
,”
AIP Conf. Proc.
,
1914
(
1
), p.
190006
.
93.
Bai
,
Y.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
177
185
94.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Metal Binder Jetting Additive Manufacturing: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
090801
.
95.
Appuhamillage
,
G. A.
,
Chartrain
,
N.
,
Meenakshisundaram
,
V.
,
Feller
,
K. D.
,
Williams
,
C. B.
, and
Long
,
T. E.
,
2019
, “
110th Anniversary: Vat Photopolymerization-Based Additive Manufacturing: Current Trends and Future Directions in Materials Design
,”
Ind. Eng. Chem. Res.
,
58
(
33
), pp.
15109
15118
.
96.
Leach
,
R.
, and
Carmignato
,
S.
,
2020
,
Precision Metal Additive Manufacturing
,
CRC Press
,
Boca Raton, FL
.
97.
Nickels
,
L.
,
2018
, “
Office-Based AM Now Open for Business
,”
Met. Powder Rep.
,
73
(
4
), pp.
195
197
.
98.
Do
,
T.
,
Kwon
,
P.
, and
Shin
,
C. S.
,
2017
, “
Process Development Toward Full-Density Stainless Steel Parts With Binder Jetting Printing
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
50
60
.
99.
Hagen
,
D.
,
Kovar
,
D.
,
Beaman
,
J.
, and
Gammage
,
M.
,
2019
, “
Laser Flash Sintering for Additive Manufacturing of Ceramics
,”
Tech. Rep., Army Research Lab, Aberdeen Proving Ground, MD
.
100.
Gonzalez-Gutierrez
,
J.
,
Cano
,
S.
,
Schuschnigg
,
S.
,
Kukla
,
C.
,
Sapkota
,
J.
, and
Holzer
,
C.
,
2018
, “
Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives
,”
Materials
,
11
(
5
), p.
840
.
101.
Wang
,
J.
,
Shaw
,
L. L.
, and
Cameron
,
T. B.
,
2006
, “
Solid Freeform Fabrication of Permanent Dental Restorations Via Slurry Micro-Extrusion
,”
J. Am. Ceram. Soc.
,
89
(
1
), pp.
346
349
.
102.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann.
,
57
(
2
), pp.
601
620
.
103.
Pique
,
A.
, and
Chrisey
,
D. B.
,
2001
,
Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources
,
Elsevier
,
New York
.
104.
Mortara
,
L.
,
Hughes
,
J.
,
Ramsundar
,
P. S.
,
Livesey
,
F.
, and
Probert
,
D. R.
,
2009
, “
Proposed Classification Scheme for Direct Writing Technologies
,”
Rapid Prototyp. J.
,
15
(
4
), pp.
299
309
.
105.
Lewis
,
J. A.
,
Smay
,
J. E.
,
Stuecker
,
J.
, and
Cesarano
,
J.
,
2006
, “
Direct Ink Writing of Three-Dimensional Ceramic Structures
,”
J. Am. Ceram. Soc.
,
89
(
12
), pp.
3599
3609
.
106.
Cesarano
,
J.
,
1998
, “
A Review of Robocasting Technology
,”
MRS Online Proc. Libr.
,
542
(
1
), pp.
133
139
.
107.
Malone
,
E.
, and
Lipson
,
H.
,
2008
, “Multi-Material Freeform Fabrication of Active Systems,”
ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
,
Haifa, Israel
,
July 7–9
, Vol.
48357
, pp.
345
353
.
108.
Li
,
B.
,
Roy
,
T. D.
,
Smith
,
C.
,
Clark
,
P.
, and
Church
,
K. H.
,
2007
, “
A Robust True Direct-Print Technology for Tissue Engineering
,”
International Manufacturing Science and Engineering Conference
,
Atlanta, GA
,
Oct. 15–18
, Vol.
42908
, pp.
103
108
.
109.
Li
,
B.
,
Clark
,
P. A.
, and
Church
,
K.
,
2007
, “
Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging
,”
International Manufacturing Science and Engineering Conference
,
Atlanta, GA
,
Oct. 15–18
, Vol.
42908
, pp.
715
721
.
110.
Roman
,
M. C.
,
Kim
,
T.
,
Prater
,
T. J.
, and
Mueller
,
R. P.
,
2017
, “
NASA Centennial Challenge: 3D-Printed Habitat
,”
AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 12–14
, p.
5279
.
111.
Mueller
,
R. P.
,
Gelino
,
N. J.
,
Smith
,
J. D.
,
Buckles
,
B. C.
,
Lippitt
,
T.
,
Schuler
,
J. M.
,
Nick
,
A. J.
,
Nugent
,
M. W.
, and
Townsend
,
I. I.
,
2018
, “
Zero Launch Mass Three-Dimensional Print Head
,”
Proceedings of the 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments
,
Cleveland, OH
,
Apr. 9–12
,
R. B.
Malla
, ed.,
American Society of Civil Engineers
,
Reston, VA
, pp.
219
232
.
112.
Crump
,
S. S.
,
1992
, “
Apparatus and Method for Creating Three-Dimensional Objects
,” June 9, U.S. Patent 5,121,329.
113.
Gong
,
H.
,
Crater
,
C.
,
Ordonez
,
A.
,
Ward
,
C.
,
Waller
,
M.
, and
Ginn
,
C.
,
2018
, “
Material Properties and Shrinkage of 3D Printing Parts Using Ultrafuse Stainless Steel 316LX Filament
,”
5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
,
Orlando, FL
,
Oct. 13–15
,
EDP Sciences
, Vol.
249
, p.
01001
.
114.
Turner
,
B. N.
, and
Gold
,
S. A.
,
2015
, “
A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness
,”
Rapid Prototyp. J.
,
20
(
3
), pp.
192
204
.
115.
Spoerk
,
M.
,
Gonzalez-Gutierrez
,
J.
,
Sapkota
,
J.
,
Schuschnigg
,
S.
, and
Holzer
,
C.
,
2018
, “
Effect of the Printing Bed Temperature on the Adhesion of Parts Produced by Fused Filament Fabrication
,”
Plast. Rubber Compos.
,
47
(
1
), pp.
17
24
.
116.
Prater
,
T.
,
Bean
,
Q.
,
Werkheiser
,
N.
, et al
,
2017
, “
A Ground Based Study on Extruder Standoff Distance for the 3d Printing in Zero g Technology Demonstration Mission
,” Queue for Publication on NASA Technical Reports Server in June.
117.
Dunn
,
J. J.
,
Hutchison
,
D. N.
,
Kemmer
,
A. M.
,
Ellsworth
,
A. Z.
,
Snyder
,
M.
,
White
,
W. B.
, and
Blair
,
B. R.
,
2010
, “
3d Printing in Space: Enabling New Markets and Accelerating the Growth of Orbital Infrastructure
,”
Proc. Space Manuf.
,
14
, pp.
29
31
.
118.
Rahman
,
K. M.
,
Letcher
,
T.
, and
Reese
,
R.
,
2015
, “
Mechanical Properties of Additively Manufactured Peek Components Using Fused Filament Fabrication
,”
ASME International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
,
American Society of Mechanical Engineers
, Vol.
57359
, p.
V02AT02A009
.
119.
Corman
,
J.
,
2014
, “
Energy and Resource Efficiency of Additive Manufacturing Technologies
,”
PhD thesis, Master’s thesis
, WZL RWTH Aachen, Germany and
MIT
,
Cambridge, MA
.
120.
Goh
,
G. D.
,
Yap
,
Y. L.
,
Tan
,
H.
,
Sing
,
S. L.
,
Goh
,
G. L.
, and
Yeong
,
W. Y.
,
2020
, “
Process–Structure–Properties in Polymer Additive Manufacturing Via Material Extrusion: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
45
(
2
), pp.
113
133
.
121.
Zaldivar
,
R.
,
Witkin
,
D.
,
McLouth
,
T.
,
Patel
,
D.
,
Schmitt
,
K.
, and
Nokes
,
J.
,
2017
, “
Influence of Processing and Orientation Print Effects on the Mechanical and Thermal Behavior of 3d-Printed Ultem® 9085 Material
,”
Addit. Manuf.
,
13
, pp.
71
80
.
122.
Cicala
,
G.
,
Ognibene
,
G.
,
Portuesi
,
S.
,
Blanco
,
I.
,
Rapisarda
,
M.
,
Pergolizzi
,
E.
, and
Recca
,
G.
,
2018
, “
Comparison of Ultem 9085 Used in Fused Deposition Modelling (FDM) With Polytherimide Blends
,”
Materials
,
11
(
2
), p.
285
.
123.
Kilroy
,
J.
,
O’bradaigh
,
C.
, and
Semprimoschnig
,
C.
,
2008
, “
Mechanical and Physical Evaluation of New Carbon Fibre
,”
SAMPE J.
,
44
(
3
), pp.
22
34
.
124.
Kuentz
,
L.
,
Salem
,
A.
,
Singh
,
M.
,
Halbig
,
M.
, and
Salem
,
J.
,
2016
, “
Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements
,” https://ntrs.nasa.gov/citations/20160010284.
125.
Murray
,
B. R.
,
Doyle
,
A.
,
Feerick
,
P.
,
Semprimoschnig
,
C. O.
,
Leen
,
S. B.
, and
Brádaigh
,
C. M. Ó.
,
2017
, “
Rotational Moulding of Peek Polymer Liners With Carbon Fibre/Peek Over Tape-Placement for Space Cryogenic Fuel Tanks
,”
Mater. Des.
,
132
, pp.
567
581
.
126.
Coughlin
,
N.
,
Drake
,
B.
,
Fjerstad
,
M.
,
Schuster
,
E.
,
Waege
,
T.
,
Weerakkody
,
A.
, and
Letcher
,
T.
,
2019
, “
Development and Mechanical Properties of Basalt Fiber-Reinforced Acrylonitrile Butadiene Styrene for In-Space Manufacturing Applications
,”
J. Compos. Sci.
,
3
(
3
), p.
89
.
127.
Gallagher
,
W. R.
,
2020
, “
Investigation of Ultem 9085 for Use in Printed Orbital Structures
,” Master's thesis, Air Force Institute of Technology, Ohio.
128.
Gibson
,
M. A.
,
Mykulowycz
,
N. M.
,
Shim
,
J.
,
Fontana
,
R.
,
Schmitt
,
P.
,
Roberts
,
A.
,
Ketkaew
,
J.
,
Shao
,
L.
,
Chen
,
W.
,
Bordeenithikasem
,
P.
, and
Myerberg
,
J. S.
,
2018
, “
3d Printing Metals Like Thermoplastics: Fused Filament Fabrication of Metallic Glasses
,”
Mater. Today
,
21
(
7
), pp.
697
702
.
129.
Gonzalez-Gutierrez
,
J.
,
Godec
,
D.
,
Kukla
,
C.
,
Schlauf
,
T.
,
Burkhardt
,
C.
, and
Holzer
,
C.
,
2017
, “
Shaping, Debinding and Sintering of Steel Components Via Fused Filament Fabrication
,”
16th International Scientific Conference on Production Engineering – Computer Integrated Manufacturing and High Speed Machining
,
Zadar, Croatia
,
June
, Vol. 16, p.
99
.
130.
Campbell
,
R.
, and
Wohlers
,
T.
,
2017
, “
Markforged: Taking a Different Approach to Metal Additive Manufacturing
,” https://repository.lboro.ac.uk/articles/journal_contribution/Markforged_Taking_a_different_approach_to_metal_Additive_Manufacturing/9346493, Accessed July 20, 2021.
131.
Prater
,
T.
,
Luchinsky
,
D.
,
Hafiychuk
,
V.
,
Wheeler
,
K.
,
Hall
,
P.
,
Ledbetter
,
F.
,
Roberts
,
C.
,
Carey
,
A.
, and
Flowers
,
P. F.
,
2021
, “
Adaptation of Metal Additive Manufacturing Processes for the International Space Station (ISS)
,” Society for the Advancement of Material and Process Engineering (SAMPE) neXus 2021,
Virtual Event
,
June 29–July 1
, pp. TP21–0000000427.
132.
Crockett
,
R.
,
Peterson
,
D.
, and
Cooper
,
K.
,
2000
, “
Fused Deposition Modeling in Microgravity
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 9–11
, pp.
671
678
.
133.
Johnston
,
M. M.
,
Werkheiser
,
M. J.
,
Cooper
,
K. G.
,
Snyder
,
M. P.
, and
Edmunson
,
J. E.
,
2014
, “
3d Printing in Zero-g ISS Technology Demonstration
,” Tech. Rep.
134.
Cooper
,
K.
, and
Griffin
,
M.
,
2003
, “
Microgravity Manufacturing Via Fused Deposition
.” https://ntrs.nasa.gov/citations/20030067856
135.
Cooper
,
K.
,
McLemore
,
C.
, and
Anderson
,
T.
,
2013
, “
Cases for Additive Manufacturing on the International Space Station
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
, p.
517
.
136.
Snyder
,
M.
,
Dunn
,
J.
, and
Gonzalez
,
E.
,
2013
, “
The Effects of Microgravity on Extrusion Based Additive Manufacturing
,”
AIAA SPACE 2013 Conference and Exposition
,
San Diego, CA
,
Sept. 10–12
, p.
5439
.
137.
Musso
,
G.
,
Lentini
,
G.
,
Enrietti
,
L.
,
Volpe
,
C.
,
Ambrosio
,
E. P.
,
Lorusso
,
M.
,
Mascetti
,
G.
, and
Valentini
,
G.
,
2016
, “Portable on Orbit Printer 3D: 1st European Additive Manufacturing Machine on International Space Station,”
Advances in Physical Ergonomics and Human Factors
,
R.
Goonetilleke
and
W.
Karwowski
, eds.,
Springer
,
New York
, pp.
643
655
.
138.
Made In Space Inc.
,
2016
, “
Additive Manufacturing Facility (AMF) User Guide
,” https://madeinspace.us/wp-content/uploads/2019/07/AMFuserguide-1.pdf, Accessed September 4, 2021.
139.
Prater
,
T.
,
2015
, “
Additive Manufacturing: From Rapid Prototyping to Flight
.”
140.
Werkheiser
,
M. J.
,
Dunn
,
J.
,
Snyder
,
M. P.
,
Edmunson
,
J.
,
Cooper
,
K.
, and
Johnston
,
M. M.
,
2014
, “
3d Printing in Zero-g ISS Technology Demonstration
,”
AIAA SPACE 2014 Conference and Exposition
,
San Diego, CA
,
Aug. 4–7
, p.
4470
.
141.
Spivey
,
R.
, and
Flores
,
G.
,
2008
, “
An Overview of the Microgravity Science Glovebox (MSG) Facility, and the Gravity-Dependent Phenomena Research Performed in the MSG on the International Space Station (ISS)
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 7–10
, p.
812
.
142.
Thompson
,
S. W.
,
Jordan
,
L. P.
, and
Flores
,
G. N.
,
2014
, “
An Overview of EXPRESS Rack, Microgravity Science Glovebox, and Sub-Rack Facilities for Materials Science Research
,” https://ntrs.nasa.go v/api/citations/20140010107/downloads/20140010107.pdf, Accessed July 22, 2021.
143.
Prater
,
T.
,
Bean
,
Q.
,
Werkheiser
,
N.
,
Grguel
,
R.
,
Beshears
,
R.
,
Rolin
,
T.
,
Huff
,
T.
,
Ryan
,
R.
,
Ledbetter
,
F.
, and
Ordonez
,
E.
,
2017
, “
Analysis of Specimens From Phase I of the 3d Printing in Zero g Technology Demonstration Mission
,”
Rapid Prototyp. J.
,
23
(
6
), pp.
1212
1225
.
144.
Prater
,
T.
,
Bean
,
Q.
,
Beshears
,
R.
,
Rolin
,
T.
,
Werkheiser
,
N.
,
Ordonez
,
E.
,
Ryan
,
R.
, and
Ledbetter
,
F.
, III
,
2016
, “
Summary Report on Phase I and Phase II Results from the 3d Printing in Zero-g Technology Demonstration Mission
,” Vol.
I
. https://ntrs.nasa.gov/citations/20160008972.
145.
Prater
,
T.
,
Werkheiser
,
N.
, and
Ledbetter
,
F.
, III
,
2018
, “
Summary Report on Phase I and Phase II Results from the 3d Printing in Zero-g Technology Demonstration Mission
,” Vol.
II
. https://ntrs.nasa.gov/citations/20180002403.
146.
Prater
,
T.
,
Werkheiser
,
N.
,
Ledbetter
,
F.
,
Timucin
,
D.
,
Wheeler
,
K.
, and
Snyder
,
M.
,
2019
, “
3d Printing in Zero g Technology Demonstration Mission: Complete Experimental Results and Summary of Related Material Modeling Efforts
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
391
417
.
147.
Abeykoon
,
C.
,
Sri-Amphorn
,
P.
, and
Fernando
,
A.
,
2020
, “
Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3d Printed Structures
,”
Int. J. Lightweight Mater. Manuf.
,
3
(
3
), pp.
284
297
.
148.
Leary
,
M.
,
2019
,
Design for Additive Manufacturing
,
Elsevier
,
New York
.
149.
Gong
,
W.
,
Yifei
,
L.
,
Tianjin
,
C.
, and
Ming
,
L.
,
2016
, “
Application of Additive Manufacturing Technology for Space
,”
Chin. J. Space Sci.
,
36
(
4
), pp.
571
576
.
150.
Cowley
,
A.
,
Perrin
,
J.
,
Meurisse
,
A.
,
Micallef
,
A.
,
Fateri
,
M.
,
Rinaldo
,
L.
,
Bamsey
,
N.
, and
Sperl
,
M.
,
2019
, “
Effects of Variable Gravity Conditions on Additive Manufacture by Fused Filament Fabrication Using Polylactic Acid Thermoplastic Filament
,”
Addit. Manuf.
,
28
, pp.
814
820
.
151.
Melenka
,
G. W.
,
Schofield
,
J. S.
,
Dawson
,
M. R.
, and
Carey
,
J. P.
,
2015
, “
Evaluation of Dimensional Accuracy and Material Properties of the Makerbot 3d Desktop Printer
,”
Rapid Prototyp. J.
,
21
(
5
), pp.
618
627
.
152.
Wang
,
K.
,
2012
, “
Die Swell of Complex Polymeric Systems
,”
Viscoelasticity–From Theory to Biological Applications
, Juan de Vicente, ed., vol.
1
, pp.
77
96
.
153.
Clinton
,
R. G.
, Jr.
,
2017
, “
NASA Additive Manufacturing Initiatives: In Space Manufacturing and Rocket Engines
,” https://ntrs.nasa.gov/api/citations/20170009098/downloads/20170009098.pdf, Accessed July 22,2021.
154.
Prater
,
T.
,
Werkheiser
,
N.
, and
Ledbetter
,
F.
,
2018
, “
Toward a Multimaterial Fabrication Laboratory: In-Space Manufacturing as an Enabling Technology for Long-Endurance Human Space Flight
,” https://ntrs.nasa.gov/api/citations/20170012391/downloads/20170012391.pdf, Accessed July 22, 2021.
155.
Lake
,
R.
, and
Thompson
,
S.
, “
Conducting Research on the International Space Station Using the Express Rack Facilities
,” https://ntrs.nasa.gov/citations/20140011636.
156.
Sledd
,
A.
, and
Mueller
,
C.
,
1999
, “
Express Rack Overview
,”
37th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 11–14
, p.
313
.
157.
Thomas
,
D.
,
Snyder
,
M. P.
,
Napoli
,
M.
,
Joyce
,
E. R.
,
Shestople
,
P.
, and
Letcher
,
T.
,
2017
, “
Effect of Acrylonitrile Butadiene Styrene Melt Extrusion Additive Manufacturing on Mechanical Performance in Reduced Gravity
,”
AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 12–14
, p.
5278
.
158.
Prater
,
T.
,
Werkheiser
,
N.
,
Ledbetter
,
F.
,
Wilkerson
,
M.
,
Soohoo
,
H.
,
Bean
,
Q.
, and
Jones
,
Z.
,
2017
, “
NASA’s In-Space Manufacturing Project: Materials and Manufacturing Process Development Update
,” https://ntrs.nasa.gov/api/citations/20170008145/downloads/20170008145.pdf, Accessed July 22, 2021.
159.
Aron
,
J.
,
2015
, “
Print Your Own Satellite—In Space
,”
New Scientist
,
227
(
3035
), pp.
8
9
.
160.
Prater
,
T.
,
2019
, “
The Proving Ground: Using Low Earth Orbit as a Test Bed for Manufacturing Technology Development
.” https://ntrs.nasa.gov/api/citations/20200001003/downloads/20200001003.pdf, Accessed July 22, 2021.
161.
Patane
,
S.
,
Joyce
,
E. R.
,
Snyder
,
M. P.
, and
Shestople
,
P.
,
2017
, “
Archinaut: In-Space Manufacturing and Assembly for Next-Generation Space Habitats
,”
AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 12–14
, p.
5227
.
162.
Patane
,
S.
,
Schomer
,
J.
, and
Snyder
,
M.
,
2018
, “
Design Reference Missions for Archinaut: A Roadmap for In-Space Robotic Manufacturing and Assembly
,”
2018 AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 17–19
, p.
5188
.
163.
TechPort
, “
Archinaut Technology Development
,” https://techport.nasa.gov/view/93903, Accessed July 20, 2021.
164.
TechPort
, “
Positrusion Filament Recycling System, Phase I
,” https://techport.nasa.gov/view/18199, Accessed July 20, 2021.
165.
Cushing
,
J.
,
Freedman
,
M.
,
Turner
,
K.
,
Muhlbauer
,
R. L.
,
Levedahl
,
B.
,
Slostad
,
J.
,
Hoyt
,
R. P.
,
Kim
,
T.
, and
Werkheiser
,
M. J.
,
2016
, “
Building a Sustainable In-Space Manufacturing Ecosystem: Positrusion and Crissp
,”
AIAA SPACE 2016
,
Long Beach, CA
,
Sept. 13–16
, p.
5396
.
166.
Risdon
,
D.
,
2019
, “
In-Space Manufacturing (ISM) ISS Refabricator Technology Demonstration
,” https://ntrs.nasa.gov/api/citations/20190005004/downloads/20190005004.pdf, Accessed July 22, 2021.
167.
Prater
,
T.
,
Werkheiser
,
M. J.
,
Ledbetter
,
F.
, and
Morgan
,
K.
,
2018
, “
In-Space Manufacturing at NASA Marshall Space Flight Center: A Portfolio of Fabrication and Recycling Technology Development for the International Space Station
,”
2018 AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 17–19
, p.
5364
.
168.
In-Space Manufacturing (ISM)
,” https://ntrs.nasa.gov/api/citations/20190031813/downloads/20190031813.pdf, Accessed July 22, 2021.
169.
Roberts
,
M.
,
2018
, “
International Space Station US National Lab
,” https://ntrs.nasa.gov/api/citations/20150016175/downloads/20150016175.pdf, Accessed July 10, 2021.
170.
Vellinger
,
J. C.
,
Boland
,
E.
,
Kurk
,
M. A.
,
Milliner
,
K.
, and
Logan
,
N. S.
,
2020
, “
Biomanufacturing System, Method, and 3D Bioprinting Hardware in a Reduced Gravity Environment
,” May 19, U.S. Patent 10,655,096.
171.
Vellinger
,
J. C.
,
Boland
,
E.
,
Kurk
,
M. A.
,
Milliner
,
K.
, and
Logan
,
N. S.
,
2020
, “
Biomanufacturing System, Method, and 3D Bioprinting Hardware in a Reduced Gravity Environment
,” Dec. 1, U.S. Patent 10,851,333.
172.
Dijksman
,
J.
,
Pierik
,
A.
,
Hutchings
,
I.
, and
Martin
,
G.
,
2013
,
Inkjet Technology for Digital Fabrication
, Wiley, West Sussex.
173.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
,
Georgiadis
,
J. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.
174.
Alamán
,
J.
,
Alicante
,
R.
,
Peña
,
J. I.
, and
Sánchez-Somolinos
,
C.
,
2016
, “
Inkjet Printing of Functional Materials for Optical and Photonic Applications
,”
Materials
,
9
(
11
), p.
910
.
175.
Haga
,
M.
,
Maekawa
,
T.
,
Kuwahara
,
K.
,
Ohara
,
A.
,
Kawasak
,
K.
,
Harada
,
T.
,
Yoda
,
S.
, and
Nakamura
,
T.
,
1995
, “
Effect of Electric Field on Marangoni Convection Under Microgravity
,”
J. Jpn. Soc. Microgravity Appl.
,
12
(
1
), p.
19
.
176.
Edwards
,
A.
,
Osborne
,
B.
,
Stoltzfus
,
J.
,
Howes
,
T.
, and
Steinberg
,
T.
,
2002
, “
Instabilities and Drop Formation in Cylindrical Liquid Jets in Reduced Gravity
,”
Phys. Fluids
,
14
(
10
), pp.
3432
3438
.
177.
Osborne
,
B. P.
, and
Steinberg
,
T. A.
,
2006
, “
An Experimental Investigation Into Liquid Jetting Modes and Break-Up Mechanisms Conducted in a New Reduced Gravity Facility
,”
Microgravity Sci. Technol.
,
18
(
3
), pp.
57
61
.
178.
Li
,
W.
,
Lan
,
D.
, and
Wang
,
Y.
,
2020
, “
Exploration of Direct-Ink-Write 3d Printing in Space: Droplet Dynamics and Patterns Formation in Microgravity
,”
Microgravity Sci. Technol.
,
32
(
5
), pp.
935
940
.
179.
Campbell
,
I.
,
Diegel
,
O.
,
Kowen
,
J.
, and
Wohlers
,
T.
,
2017
,
Wohlers Report 2017 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report
,
Wohlers Associates
,
Fort Collins, CO
.
180.
Edwards
,
P.
,
O’Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.
181.
Gong
,
X.
,
Anderson
,
T.
, and
Chou
,
K.
,
2012
, “
Review on Powder-Based Electron Beam Additive Manufacturing Technology
,”
International Symposium on Flexible Automation
,
St. Louis, MO
,
June 18–20
,
American Society of Mechanical Engineers
, Vol.
45110
, pp.
507
515
.
182.
Mani
,
M.
,
Lane
,
B. M.
,
Donmez
,
M. A.
,
Feng
,
S. C.
, and
Moylan
,
S. P.
,
2017
, “
A Review on Measurement Science Needs for Real-Time Control of Additive Manufacturing Metal Powder Bed Fusion Processes
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1400
1418
.
183.
Diegel
,
O.
,
Singamneni
,
S.
,
Reay
,
S.
, and
Withell
,
A.
,
2010
, “
Tools for Sustainable Product Design: Additive Manufacturing
,”
J. Sustain. Develop.
,
3
(
3
), pp.
68
75
.
184.
Vock
,
S.
,
Klöden
,
B.
,
Kirchner
,
A.
,
Weißgärber
,
T.
, and
Kieback
,
B.
,
2019
, “
Powders for Powder Bed Fusion: A Review
,”
Prog. Addit. Manuf.
,
4
(
4
), pp.
1
15
.
185.
Asgari
,
H.
,
Baxter
,
C.
,
Hosseinkhani
,
K.
, and
Mohammadi
,
M.
,
2017
, “
On Microstructure and Mechanical Properties of Additively Manufactured alsi10mg 200c Using Recycled Powder
,”
Mater. Sci. Eng. A
,
707
, pp.
148
158
.
186.
Park
,
H. K.
,
Ahn
,
Y. K.
,
Lee
,
B. S.
,
Jung
,
K. H.
,
Lee
,
C. W.
, and
Kim
,
H. G.
,
2017
, “
Refining Effect of Electron Beam Melting on Additive Manufacturing of Pure Titanium Products
,”
Mater. Lett.
,
187
, pp.
98
100
.
187.
Ardila
,
L.
,
Garciandia
,
F.
,
Gonzalez-Díaz
,
J.
,
Alvarez
,
P.
,
Echeverria
,
A.
,
Petite
,
M.
,
Deffley
,
R.
, and
Ochoa
,
J.
,
2014
, “
Effect of in718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting
,”
Phys. Procedia
,
56
, pp.
99
107
.
188.
Brandão
,
A. D.
,
Gerard
,
R.
,
Gumpinger
,
J.
,
Beretta
,
S.
,
Makaya
,
A.
,
Pambaguian
,
L.
, and
Ghidini
,
T.
,
2017
, “
Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products
,”
Materials
,
10
(
5
), p.
522
.
189.
Santecchia
,
E.
,
Mengucci
,
P.
,
Gatto
,
A.
,
Bassoli
,
E.
,
Defanti
,
S.
, and
Barucca
,
G.
,
2019
, “
Cross-Contamination Quantification in Powders for Additive Manufacturing: A Study on Ti-6Al-4V and Maraging Steel
,”
Materials
,
12
(
15
), p.
2342
.
190.
Hildreth
,
O. J.
,
Nassar
,
A. R.
,
Chasse
,
K. R.
, and
Simpson
,
T. W.
,
2016
, “
Dissolvable Metal Supports for 3D Direct Metal Printing
,”
3D Print. Addit. Manuf.
,
3
(
2
), pp.
90
97
.
191.
Caprio
,
L.
,
Demir
,
A. G.
,
Previtali
,
B.
, and
Colosimo
,
B. M.
,
2020
, “
Determining the Feasible Conditions for Processing Lunar Regolith Simulant Via Laser Powder Bed Fusion
,”
Addit. Manuf.
,
32
, p.
101029
.
192.
Lotz
,
C.
,
Gerdes
,
N.
,
Sperling
,
R.
,
Lazar
,
S.
,
Linke
,
S.
,
Neumann
,
J.
,
Stoll
,
E.
,
Ertmer
,
W.
, and
Overmeyer
,
L.
,
2020
, “
Tests of Additive Manufacturing and Other Processes Under Space Gravity Conditions in the Einstein-Elevator
,”
Logist. J. Proc.
,
2020
, p.
12
.
193.
Reitz
,
B.
,
Lotz
,
C.
,
Gerdes
,
N.
,
Linke
,
S.
,
Olsen
,
E.
,
Pflieger
,
K.
,
Sohrt
,
S.
,
Ernst
,
M.
,
Taschner
,
P.
,
Neumann
,
J.
,
Stoll
,
E.
, and
Overmeyer
,
L.
,
2021
, “
Additive Manufacturing Under Lunar Gravity and Microgravity
,”
Microgravity Sci. Technol.
,
33
(
2
), pp.
1
12
.
194.
Zocca
,
A.
,
Lüchtenborg
,
J.
,
Mühler
,
T.
,
Wilbig
,
J.
,
Mohr
,
G.
,
Villatte
,
T.
,
Léonard
,
F.
,
Nolze
,
G.
,
Sparenberg
,
M.
,
Melcher
,
J.
,
Hilgenberg
,
K.
, and
Günster
,
J.
,
2019
, “
Enabling the 3D Printing of Metal Components in µ-Gravity
,”
Adv. Mater. Technol.
,
4
(
10
), p.
1900506
.
195.
Guenster
,
J.
,
Zocca
,
A.
,
Gomes
,
C. M.
, and
Muehler
,
T.
,
2017
, “
Method for Stabilizing a Powder Bed by Means of Vacuum for Additive Manufacturing
,” Jan. 3, U.S. Patent 9,533,452.
196.
D’Angelo
,
O.
,
Kuthe
,
F.
,
Liu
,
S.-J.
,
Wiedey
,
R.
,
Bennett
,
J. M.
,
Meisnar
,
M.
,
Barnes
,
A.
,
Kranz
,
W. T.
,
Voigtmann
,
T.
, and
Meyer
,
A.
,
2021
, “
A Gravity-Independent Powder-Based Additive Manufacturing Process Tailored for Space Applications
,”
Addit. Manuf.
,
47
, p.
102349
.
197.
Griffith
,
M.
,
Keicher
,
D.
, and
Atwood
,
C. L.
,
1996
, “
Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS™)
,” Tech. Rep., Sandia National Labs., Albuquerque, NM.
198.
Keicher
,
D.
,
Romero
,
J.
,
Atwood
,
C.
,
Griffith
,
M.
,
Jeantette
,
F.
,
Harwell
,
L.
,
Greene
,
D.
, and
Smugeresky
,
J.
,
1996
, “
Laser Engineered Net Shaping (LENS™) for Additive Component Processing
,”
Tech. Rep., Sandia National Labs.
,
Albuquerque, NM
.
199.
Dave
,
V. R.
,
1996
, “
Electron Beam (EB)-Assisted Materials Fabrication
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
200.
Taminger
,
K.
, and
Hafley
,
R. A.
,
2003
, “
Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process
,” https://ntrs.nasa.gov/citations/20040042496.
201.
Stawovy
,
M. T.
,
2018
, “
Comparison of LCAC and PM Mo Deposited Using Sciaky EBAM
,”
Int. J. Refract. Met. Hard Mater.
,
73
, pp.
162
167
.
202.
Duda
,
T.
, and
Raghavan
,
L. V.
,
2016
, “
3d Metal Printing Technology
,”
IFAC-PapersOnLine
,
49
(
29
), pp.
103
110
.
203.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
,
Xu
,
J.
, and
Norrish
,
J.
,
2018
, “
A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
J. Manuf. Process.
,
35
, pp.
127
139
.
204.
Stecker
,
S.
,
Lachenberg
,
K.
,
Wang
,
H.
, and
Salo
,
R.
,
2006
,
Advanced Electron Beam Free Form Fabrication Methods & Technology
,
AWS Welding Show’
,
Atlanta, GA
, pp.
35
46
.
205.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
465
481
.
206.
Dass
,
A.
, and
Moridi
,
A.
,
2019
, “
State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design
,”
Coatings
,
9
(
7
), p.
418
.
207.
Gradl
,
P. R.
,
Protz
,
C. S.
, and
Wammen
,
T.
,
2019
, “
Additive Manufacturing and Hot-Fire Testing of Liquid Rocket Channel Wall Nozzles Using Blown Powder Directed Energy Deposition Inconel 625 and jbk-75 Alloys
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, p.
4362
.
208.
Gradl
,
P. R.
,
Protz
,
C. S.
,
Zagorski
,
K.
,
Doshi
,
V.
, and
McCallum
,
H.
, “
Additive Manufacturing and Hot-Fire Testing of Bimetallic Grcop-84 and c-18150 Channel-Cooled Combustion Chambers Using Powder Bed Fusion and Inconel 625 Hybrid Directed Energy Deposition
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, p.
4390
.
209.
Naden
,
N.
, and
Prater
,
T.
,
2020
, “
A Review of Welding In Space and Related Technologies
,” https://ntrs.nasa.gov/citations/20200002259.
210.
Liu
,
X.
,
Dong
,
Q.
,
Wang
,
P.
, and
Chen
,
H.
,
2021
, “
Review of Electron Beam Welding Technology in Space Environment
,”
Optik
,
225
, p.
165720
.
211.
Kuntanapreeda
,
S.
, and
Hess
,
D.
,
2021
, “
Opening Access to Space by Maximizing Utilization of 3d Printing in Launch Vehicle Design and Production
,”
Appl. Sci. Eng. Prog.
,
14
(
2
), pp.
143
145
.
212.
Lee
,
K.-O.
,
Lim
,
B.
,
Kim
,
D.-J.
,
Hong
,
M.
, and
Lee
,
K.
,
2020
, “
Technology Trends in Additively Manufactured Small Rocket Engines for Launcher Applications
,”
J. Korean Soc. Propul. Eng.
,
24
(
2
), pp.
73
82
.
213.
Balla
,
V. K.
,
Roberson
,
L. B.
,
O’Connor
,
G. W.
,
Trigwell
,
S.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2012
, “
First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts
,”
Rapid Prototyp. J.
,
18
(
6
), pp.
451
457
.
214.
Martina
,
F.
,
Ding
,
J.
,
Williams
,
S.
,
Caballero
,
A.
,
Pardal
,
G.
, and
Quintino
,
L.
,
2019
, “
Tandem Metal Inert Gas Process for High Productivity Wire Arc Additive Manufacturing in Stainless Steel
,”
Addit. Manuf.
,
25
, pp.
545
550
.
215.
Martina
,
F.
,
Williams
,
S. W.
, and
Colegrove
,
P. A.
,
2013
, “
Improved Microstructure and Increased Mechanical Properties of Additive Manufacture Produced Ti-6Al-4V by Interpass Cold Rolling
,”
2013 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
490
496
.
216.
Colegrove
,
P.
,
McAndrew
,
A.
,
Ding
,
J.
,
Martina
,
F.
,
Kurzynski
,
P.
, and
Williams
,
S.
,
2016
, “
System Architectures for Large Scale Wire+ Arc Additive Manufacture
,”
10th International Conference on Trends in Welding Research
,
Tokyo, Japan
,
Oct. 11–14
, p.
5
.
217.
Taminger
,
K.
,
Hafley
,
R. A.
, and
Dicus
,
D. L.
,
2002
, “
Solid Freeform Fabrication: An Enabling Technology for Future Space Missions
,” https://ntrs.nasa.gov/citations/20030013635.
218.
Watson
,
J.
,
Taminger
,
K.
,
Hafley
,
R.
, and
Petersen
,
D.
,
2002
, “
Development of a Prototype Low-Voltage Electron Beam Freeform Fabrication System
,”
2002 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 5–7
, pp.
458
465
.
219.
Taminger
,
K. M.
, and
Hafley
,
R. A.
,
2006
, “
Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing
,” https://ntrs.nasa.gov/citations/20080013538
220.
Hafley
,
R.
,
Taminger
,
K.
, and
Bird
,
R.
,
2007
. “
Electron Beam Freeform Fabrication in the Space Environment
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
, p.
1154
.
221.
Wallace
,
T. A.
,
Bey
,
K. S.
,
Taminger
,
K. M.
, and
Hafley
,
R. A.
,
2004
, “
A Design of Experiments Approach Defining the Relationships Between Processing and Microstructure for Ti-6Al-4V
,”
2004 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 2–4
, pp.
104
115
.
222.
Taminger
,
K.
, and
Hafley
,
R. A.
,
2002
, “
Characterization of 2219 Aluminum Produced by Electron Beam Freeform Fabrication
,”
2002 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 5–7
, pp.
482
489
.
223.
Taminger
,
K.
,
Hafley
,
R. A.
,
Fahringer
,
D. T.
, and
Martin
,
R. E.
,
2004
, “
Effect of Surface Treatments on Electron Beam Freeform Fabricated Aluminum Structures
,”
2004 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 2–4
, pp.
460
470
.
224.
Taminger
,
K. M.
,
2008
, “
Electron Beam Freeform Fabrication: A Fabrication Process That Revolutionizes Aircraft Structural Designs and Spacecraft Supportability
,” https://ntrs.nasa.gov/citations/20080021301.
225.
Gockel
,
J.
,
Beuth
,
J.
, and
Taminger
,
K.
,
2014
, “
Integrated Control of Solidification Microstructure and Melt Pool Dimensions in Electron Beam Wire Feed Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
1
, pp.
119
126
.
226.
Pugh, A., Billing, C., Bevan, R., Green, A., Kitsos, T., Brittain, B., Schwarz, J., Bramley, S., and Moore, J., 2021, “The West Midlands Space Cluster Development Programme: University Asset Mapping,” University of Birmingham Executive Report, March 31, 2021, p. 12.
https://www.birmingham.ac.uk/documents/college-social-sciences/business/research/city-redi/space-cluster/wm-space-cluster-asset-mapping.pdf.
227.
Molitch-Hou
,
M.
,
2016
, “
Researchers 3D Print Metal in Zero G for ESA
,” https://www.engineering.com/story/researchers-3d-print-metal-in-zero-g-for-esa, Accessed June 13, 2021.
228.
Gu
,
H.
, and
Li
,
L.
,
2019
, “
Computational Fluid Dynamic Simulation of Gravity and Pressure Effects in Laser Metal Deposition for Potential Additive Manufacturing in Space
,”
Int. J. Heat Mass Transfer
,
140
, pp.
51
65
.
229.
Xie
,
H.
,
Duan
,
X.
,
Wang
,
G.
,
Fan
,
S.
, and
Ding
,
X.
,
2019
, “
Liquid Bridge Simulation of Metal-Wire Laser Additive Manufacturing in Microgravity Environment
,”
9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-Limited Plasmonic Lithography and Innovative Manufacturing Technology
,
Chengdu, China
,
June 26–29
,
International Society for Optics and Photonics
, Vol. 10842, p.
108420O
.
230.
Clarinval
,
A.-M.
,
2006
, “
Production of Metallic and Ceramic Parts With the Optoform Process
,”
Tech. Rep., Centre De Recherches Scientifiques Et Techniques De L’industrie Fabrications
.
231.
Liu
,
M.
,
Tang
,
W.
,
Duan
,
W.
,
Li
,
S.
,
Dou
,
R.
,
Wang
,
G.
,
Liu
,
B.
, and
Wang
,
L.
,
2019
, “
Digital Light Processing of Lunar Regolith Structures With High Mechanical Properties
,”
Ceram. Int.
,
45
(
5
), pp.
5829
5836
.
232.
Cheibas
,
I.
,
Laot
,
M.
,
Popovich
,
V.
,
Rich
,
B.
, and
Castillo
,
S. R.
, “
Additive Manufacturing of Functionally Graded Materials With In-Situ Resources
,” Technical Report, ESA.
233.
Dou
,
R.
,
Tang
,
W. Z.
,
Wang
,
L.
,
Li
,
S.
,
Duan
,
W. Y.
,
Liu
,
M.
,
Zhang
,
Y. B.
, and
Wang
,
G.
,
2019
, “
Sintering of Lunar Regolith Structures Fabricated Via Digital Light Processing
,”
Ceram. Int.
,
45
(
14
), pp.
17210
17215
.
234.
Space
,
M. I.
,
2017
, “
New Space-Based Manufacturing Technologies Demonstrated by Made In Space
,” https://medium.com/made-in-space/new-space-based-manufacturing-technologies-demonstrated-by-made-in-space-79000e771ac4, Feb., Accessed July 10,2021.
235.
Moore
,
S.
,
2021
, “
The Future of 3d Printing Ceramics In Space
,” https://www.azom.com/article.aspx?ArticleID=20024, Jan., Accessed July 10, 2021.
236.
Dou
,
R.
,
Tang
,
W.
,
Hu
,
K.
, and
Wang
,
L.
,
2022
, “
Ceramic Paste for Space Stereolithography 3d Printing Technology in Microgravity Environment
,”
J. Eur. Ceram. Soc.
,
42
(
9
), pp.
3968
3975
.
237.
Cross
,
M. M.
,
1965
, “
Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems
,”
J. Colloid Sci.
,
20
(
5
), pp.
417
437
.
238.
Dini
,
E.
,
2009
, “
D-Shape-the 21st Century Revolution in Building Technology Has a Name
,”
London
, pp.
1
16
.
239.
Cesaretti
,
G.
,
2012
, “
3d Printed Building Blocks Using Lunar Soil-final report (3dp-alt-rp-0001)
”.
European Space Agency, ALTA, May 2012, 31. Document No. 3DP-ALT-ES1 0001
.
240.
Cesaretti
,
G.
,
Dini
,
E.
,
De Kestelier
,
X.
,
Colla
,
V.
, and
Pambaguian
,
L.
,
2014
, “
Building Components for an Outpost on the Lunar Soil by Means of a Novel 3d Printing Technology
,”
Acta Astronaut.
,
93
, pp.
430
450
.
241.
Feuerbacher
,
B.
,
Hamacher
,
H.
, and
Naumann
,
R. J.
,
2012
,
Materials Sciences In Space: A Contribution to the Scientific Basis of Space Processing
,
Springer
,
Berlin
.
242.
Snyder
,
M.
,
Napoli
,
M.
,
Dunn
,
J.
, and
Kemmer
,
A.
,
2015
, “
Metal Casting Methods in Microgravity and Other Environments
,” May 28, U.S. Patent Ap. 14/555,234.
243.
Wang
,
G.
,
Zhao
,
W.
,
Liu
,
Y.
, and
Cheng
,
T.
,
2020
, “
Review of Space Manufacturing Technique and Developments
,”
Sci. Sin.: Phys. Mech. Astron.
,
50
(
4
), p.
047006
.
244.
Vincent
,
G.
,
2003
, “
Machining in Microgravity
,”
AIP Conf. Proc.
,
654
, pp.
882
886
.
245.
Zhu
,
Z.
,
Dhokia
,
V. G.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2013
, “
A Review of Hybrid Manufacturing Processes—State of the Art and Future Perspectives
,”
Int. J. Comput. Integr. Manuf.
,
26
(
7
), pp.
596
615
.
246.
Merklein
,
M.
,
Junker
,
D.
,
Schaub
,
A.
, and
Neubauer
,
F.
,
2016
, “
Hybrid Additive Manufacturing Technologies—An Analysis Regarding Potentials and Applications
,”
Phys. Procedia
,
83
, pp.
549
559
.
247.
Chong
,
L.
,
Ramakrishna
,
S.
, and
Singh
,
S.
,
2018
, “
A Review of Digital Manufacturing-Based Hybrid Additive Manufacturing Processes
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5
), pp.
2281
2300
.
248.
Prater
,
T. J.
,
Werkheiser
,
M. J.
,
Jehle
,
A.
,
Ledbetter
,
F.
,
Bean
,
Q.
,
Wilkerson
,
M.
,
Soohoo
,
H.
, and
Hipp
,
B.
,
2017
, “
NASA’s In-Space Manufacturing Project: Development of a Multimaterial Fabrication Laboratory for the International Space Station
,”
AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 12–14
, p.
5277
.
249.
Prater
,
T.
,
Edmunson
,
J.
,
Ledbetter
,
F.
,
Fiske
,
M.
,
Hill
,
C.
,
Meyyappan
,
M.
,
Roberts
,
C.
,
Huebner
,
L.
,
Hall
,
P.
, and
Werkheiser
,
N.
,
2019
, “
NASA’s In-Space Manufacturing Project: Update on Manufacturing Technologies and Materials to Enable More Sustainable and Safer Exploration
,”
70th International Astronautical Congress (IAC)
,
Washington, DC
,
Oct. 21–25
, pp. IAC–19.D3.2B.5.
250.
Grace
,
R.
,
2017
, “
One of NASA’s Missions: Taking 3D Printing to New Heights: In-Space Manufacturing, Despite Many Challenges, Offers the Potential to Enhance Astronaut Safety, Lighten Payloads & Extend Missions
,”
Plast. Eng.
,
73
(
8
), pp.
8
15
.
251.
Warner
,
C.
,
2017
, “
NASA Selects Three Companies to Develop ‘FabLab’ Prototypes
,” https://www.nasa.gov/press-release/nasa-selects-three-companies-to-develop-fablab-prototypes, Accessed July 24, 2021.
252.
Nickels
,
L.
,
2016
, “
Additive Manufacturing: A user's Guide
,”
Metal Powder Report
,
71
(
2
), pp.
100
105
.
253.
Levy
,
A.
,
Miriyev
,
A.
,
Sridharan
,
N.
,
Han
,
T.
,
Tuval
,
E.
,
Babu
,
S. S.
,
Dapino
,
M. J.
, and
Frage
,
N.
,
2018
, “
Ultrasonic Additive Manufacturing of Steel: Method, Post-Processing Treatments and Properties
,”
J. Mater. Process. Technol.
,
256
, pp.
183
189
.
254.
Ram
,
G. J.
,
Robinson
,
C.
,
Yang
,
Y.
, and
Stucker
,
B.
,
2007
, “
Use of Ultrasonic Consolidation for Fabrication of Multimaterial Structures
,”
Rapid Prototyp. J.
,
13
(
4
), pp.
226
235
.
255.
Obielodan
,
J.
, and
Stucker
,
B.
,
2010
, “
Dual-Material Minimum Weight Structures Fabrication Using Ultrasonic Consolidation
,”
21st Annual International Solid Freeform Fabrication Symposium
,
Austin, TX, Aug
. 9–11, pp.
48
81
.
256.
Hehr
,
A.
, and
Norfolk
,
M.
,
2019
, “
A Comprehensive Review of Ultrasonic Additive Manufacturing
,”
Rapid Prototyp. J.
,
26
(
3
), pp.
445
458
.
257.
Robinson
,
C. J.
,
Stucker
,
B.
,
Lopes
,
A. J.
,
Wicker
,
R.
, and
Palmer
,
J. A.
,
2006
, “
Integration of Direct-Write (DW) and Ultrasonic Consolidation (UC) Technologies to Create Advanced Structures With Embedded Electrical Circuitry
,”
2006 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 14–16
, pp.
60
69
.
258.
Siggard
,
E. J.
,
Madhusoodanan
,
A. S.
,
Stucker
,
B.
, and
Eames
,
B.
,
2006
, “
Structurally Embedded Electrical Systems Using Ultrasonic Consolidation (UC)
,”
2006 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 14–16
, pp.
70
83
.
259.
Hernandez
,
L. A.
, and
Stucker
,
B.
,
2009
,
Integration & Process Planning for Combined Ultrasonic Consolidation and Direct Write
,
Utah State University
,
Logan
.
260.
Prater
,
T.
,
Werkheiser
,
N.
,
Morgan
,
K.
, and
Ledbetter
,
F.
,
2018
, “
The High Frontier: A New Age of Manufacturing In Space
,” https://ntrs.nasa.gov/api/citations/20180007963/downloads/20180007963.pdf, Accessed July 22, 2021.
261.
Prater
,
T.
,
Edmunson
,
J.
,
Ledbetter
,
F. E.
,
Wheeler
,
K. R.
,
Hafiychuk
,
V.
,
Fiske
,
M.
, and
Elrod
,
L.
,
2019
, “
Overview of the In-Space Manufacturing Technology Portfolio
.”
262.
TechPort
, “
Sintered Inductive Metal Printer With Laser Exposure, Phase I
,” https://techport.nasa.gov/view/89677, Accessed July 20, 2021.
263.
Kurk
,
A.
,
2017
, “
Sintered Inductive Metal Printer With Laser Enhancement
,”
Proceedings of the National Space and Missile Materials Symposium
,
Palm Springs, CA
,
June 26–29
.
264.
TechPort
, “
Sintered Inductive Metal Printer With Laser Exposure, Phase II
,” https://techport.nasa.gov/view/93762, Accessed July 20, 2021.
265.
TechPort
, “
Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, Phase I
,” https://techport.nasa.gov/view/93631, Accessed July 20, 2021.
266.
Muhlbauer
,
R.
,
2017
,
Metal Advanced Manufacturing Bot Assembly (MAMBA) Process
,
Small Business Innovative Research (SBIR) Abstract
. https://sbir.nasa.gov/SBIR/abstracts/17/sbir/phase1/SBIR-17-1-H7.02-9710.html Accessed July 20, 2021.
267.
TechPort
, “
Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, Phase II
,” https://techport.nasa.gov/view/101899, Accessed July 20, 2021.
268.
TechPort
, “
The Vulcan Advanced Hybrid Manufacturing System, Phase I
,” https://techport.nasa.gov/view/93797, Accessed July 20, 2021.
269.
TechPort
, “
The Vulcan Advanced Hybrid Manufacturing System, Phase II
,” https://techport.nasa.gov/view/101817, Accessed July 20, 2021.
270.
Singh
,
P.
,
2020
, “
Materials-Processing Relationships for Metal Fused Filament Fabrication of Ti-6Al-4V Alloy
,” PhD thesis, University of Louisville, KY.
271.
Luchinsky
,
D. G.
,
Hafiychuk
,
V.
,
Wheeler
,
K. R.
, and
Prater
,
T. J.
,
2021
, “
Analysis of Nonlinear Shrinkage for the Bound Metal Deposition Manufacturing Using Multi-Scale Approach
,” Tech. Rep.
272.
Zubrin
,
R.
,
2011
,
Case for Mars
,
Simon and Schuster
,
New York
.
273.
Voorhies
,
A. A.
,
Ott
,
C. M.
,
Mehta
,
S.
,
Pierson
,
D. L.
,
Crucian
,
B. E.
,
Feiveson
,
A.
,
Oubre
,
C. M.
,
Torralba
,
M.
,
Moncera
,
K.
,
Zhang
,
Y.
, and
Zurek
,
E.
,
2019
, “
Study of the Impact of Long-Duration Space Missions at the International Space Station on the Astronaut Microbiome
,”
Sci. Rep.
,
9
(
1
), pp.
1
17
.
274.
Sobel
,
A.
,
2020
, “
Update on Bioprinting and Biofabrication in Support of Aerospace Missions and the Human Condition
,”
Aerosp. Med. Hum. Perform.
,
91
(
5
), pp.
457
458
.
275.
Hospodiuk
,
M.
,
Dey
,
M.
,
Sosnoski
,
D.
, and
Ozbolat
,
I. T.
,
2017
, “
The Bioink: A Comprehensive Review on Bioprintable Materials
,”
Biotechnol. Adv.
,
35
(
2
), pp.
217
239
.
276.
Mandrycky
,
C.
,
Wang
,
Z.
,
Kim
,
K.
, and
Kim
,
D.-H.
,
2016
, “
3d Bioprinting for Engineering Complex Tissues
,”
Biotechnol. Adv.
,
34
(
4
), pp.
422
434
.
277.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.
278.
Gungor-Ozkerim
,
P. S.
,
Inci
,
I.
,
Zhang
,
Y. S.
,
Khademhosseini
,
A.
, and
Dokmeci
,
M. R.
,
2018
, “
Bioinks for 3D Bioprinting: An Overview
,”
Biomater. Sci.
,
6
(
5
), pp.
915
946
.
279.
Parfenov
,
V. A.
,
Khesuani
,
Y. D.
,
Petrov
,
S. V.
,
Karalkin
,
P. A.
,
Koudan
,
E. V.
,
Nezhurina
,
E. K.
,
Pereira
,
F. D.
,
Krokhmal
,
A. A.
,
Gryadunova
,
A. A.
,
Bulanova
,
E. A.
, and
Vakhrushev
,
I. V.
,
2020
, “
Magnetic Levitational Bioassembly of 3d Tissue Construct in Space
,”
Sci. Adv.
,
6
(
29
), p.
eaba4174
.
280.
Short
,
K.
, and
Van Buren
,
D.
,
2014
, “
Printable Spacecraft: Flexible Electronic Platforms for NASA Missions
” [Final Report: Early Stage Innovation, NASA Innovative Advanced Concepts (NIAC) Phase 2].
281.
Meyyappan
,
M.
,
Koehne
,
J. E.
, and
Han
,
J.-W.
,
2015
, “
Nanoelectronics and Nanosensors for Space Exploration
,”
MRS Bull.
,
40
(
10
), pp.
822
828
.
282.
Han
,
J.-W.
,
Kim
,
B.
,
Li
,
J.
, and
Meyyappan
,
M.
,
2012
, “
Carbon Nanotube Based Humidity Sensor on Cellulose Paper
,”
J. Phys. Chem. C
,
116
(
41
), pp.
22094
22097
.
283.
Han
,
J.-W.
,
Kim
,
B.
,
Li
,
J.
, and
Meyyappan
,
M.
,
2013
, “
A Carbon Nanotube Based Ammonia Sensor on Cotton Textile
,”
Appl. Phys. Lett.
,
102
(
19
), p.
193104
.
284.
Han
,
J.-W.
,
Kim
,
B.
,
Li
,
J.
, and
Meyyappan
,
M.
,
2014
, “
A Carbon Nanotube Based Ammonia Sensor on Cellulose Paper
,”
RSC Adv.
,
4
(
2
), pp.
549
553
.
285.
Kim
,
B.
,
Lu
,
Y.
,
Kim
,
T.
,
Han
,
J.-W.
,
Meyyappan
,
M.
, and
Li
,
J.
,
2014
, “
Carbon Nanotube Coated Paper Sensor for Damage Diagnosis
,”
ACS Nano
,
8
(
12
), pp.
12092
12097
.
286.
Seol
,
M.-L.
,
Han
,
J.-W.
,
Moon
,
D.-I.
, and
Meyyappan
,
M.
,
2017
, “
Triboelectric Nanogenerator for Mars Environment
,”
Nano Energy
,
39
, pp.
238
244
.
287.
Seol
,
M.-L.
,
Han
,
J.-W.
,
Moon
,
D.-I.
,
Yoon
,
K. J.
,
Hwang
,
C. S.
, and
Meyyappan
,
M.
,
2018
, “
All-Printed Triboelectric Nanogenerator
,”
Nano Energy
,
44
, pp.
82
88
.
288.
Wilkinson
,
N.
,
Smith
,
M.
,
Kay
,
R.
, and
Harris
,
R.
,
2019
, “
A Review of Aerosol Jet Printing—A Non-Traditional Hybrid Process for Micro-Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4599
4619
.
289.
Wu
,
C.-H.
, and
Thompson
,
F. V.
,
2017
, “
Application of Temperature-Controlled Thermal Atomization for Printing Electronics In Space
,”
Marshall Space Flight Center Faculty Fellowship Program
, p.
197
.
290.
TechPort
, “
Adaptive Laser Sintering System for In-Space Printed Electronics, Phase I
,” https://techport.nas a.gov/view/93332, Accessed July 20, 2021.
291.
Renn
,
M. J.
,
Schrandt
,
M.
,
Renn
,
J.
, and
Feng
,
J. Q.
,
2017
, “
Localized Laser Sintering of Metal Nanoparticle Inks Printed With Aerosol Jet® Technology for Flexible Electronics
,”
J. Microelectron. Electron. Packag.
,
14
(
4
), pp.
132
139
.
292.
TechPort
, “
Plasma Jet Printing Technology for In-Space Manufacturing and In-Situ Resource Utilization, Phase I
,” https://techport.nasa.gov/view/94708, Accessed July 20, 2021.
293.
Perez
,
K. B.
, and
Williams
,
C. B.
,
2013
, “
Combining Additive Manufacturing and Direct Write for Integrated Electronics—A Review
,”
24th International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
SFF
,
Austin, TX
,
Aug. 12–14
, pp.
962
979
.
294.
Marshall
,
W. M.
,
Stegeman
,
J. D.
,
Zemba
,
M.
,
MacDonald
,
E.
,
Shemelya
,
C.
,
Wicker
,
R.
,
Kwas
,
A.
, and
Kief
,
C.
,
2015
, “
Using Additive Manufacturing to Print a Cubesat Propulsion System
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
,
July 27–29
, p.
4184
.
295.
Shemelya
,
C.
,
Cedillos
,
F.
,
Aguilera
,
E.
,
Espalin
,
D.
,
Muse
,
D.
,
Wicker
,
R.
, and
MacDonald
,
E.
,
2014
, “
Encapsulated Copper Wire and Copper Mesh Capacitive Sensing for 3-d Printing Applications
,”
IEEE Sens. J.
,
15
(
2
), pp.
1280
1286
.
296.
Mitra
,
D.
,
Striker
,
R.
,
Cleveland
,
J.
,
Braaten
,
B. D.
,
Kabir
,
K. S.
,
Aqueeb
,
A.
,
Burczek
,
E.
,
Roy
,
S.
, and
Ye
,
S.
,
2021
, “
A 3D Printed Microstrip Patch Antenna Using Electrifi Filament for In-Space Manufacturing
,”
2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)
,
Boulder, CO
,
Jan. 4–9
,
IEEE
, pp.
216
217
.
297.
Guthrie
,
P.
,
2016
, “
Sporks in Space: Bothell Firm Brings Recycling to Final Frontier
,”
Herald Bus. J.
,
24
.
298.
Prater
,
T.
,
Tilson
,
W.
, and
Jones
,
Z.
,
2015
, “
Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718
,”
JANNAF Propulsion Meeting
, No. M15-4523.
299.
Spivey
,
R.
,
Gilley
,
S.
,
Ostrogorsky
,
A.
,
Grugel
,
R.
,
Smith
,
G.
, and
Luz
,
P.
,
2003
, “
SUBSA and PFMI Transparent Furnace Systems Currently in Use in the International Space Station Microgravity Science Glovebox
,”
41st Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, p.
1362
.
You do not currently have access to this content.