Abstract

The master sintering curve (MSC) was developed for the densification description and prediction of W-Mo-Cu alloy sintered by electric field sintering. W-Mo-Cu compacts were sintered at a temperature of 975 °C, the pressure of 30 MPa, and heating rate of 25,75,125 °C/s, respectively. The MSC of W-Mo-Cu alloy was successfully constructed with the calculated value Q = 110 kJ/mol and experimental data (such as shrinkage data and sintering time and temperature) of the compact. The shrinkage response and the densification process of the compact were studied with the MSC. What is more, the densification of the alloy was verified and predicted by the MSC. The results show that the MSC is a promising strategy for predicting the densification evolution of the ternary alloy during sintering.

References

1.
Cao
,
J.
,
Liu
,
J. X.
,
He
,
C.
,
Li
,
S. K.
,
Hao
,
Z. H.
, and
Xue
,
X. Y.
,
2018
, “
Enhanced Ductility of W-Mo-Cu Alloy Through the Formation of Nanometer-to-Micrometer-Thick Dual-Phase Transition Phase Layer
,”
Mater. Des.
,
164
, p.
107536
.
2.
Zhou
,
H. L.
,
Feng
,
K. Q.
,
Ke
,
S. X.
, and
Li
,
Y. F.
,
2018
, “
Densification and Properties Investigation of W-Mo-Cu Composites Prepared by Large Current Electric Field Sintering With Different Technologic Parameter
,”
J. Alloys Compd.
,
767
, pp.
567
574
.
3.
Zhou
,
H. L.
,
Feng
,
K. Q.
,
Xiao
,
Y. H.
,
Liu
,
Y. F.
, and
Ke
,
S. X.
,
2019
, “
Pressure Effects on a Novel W-Mo-Cu Alloy by Large Current Electric Field Sintering: Sintering Behavior, Microstructure and Properties
,”
J. Alloys Compd.
,
785
, pp.
965
971
.
4.
Ke
,
S. X.
,
Feng
,
K. Q.
,
Zhou
,
H. L.
, and
Shui
,
Y.
,
2019
, “
Phase Evolution of Mo-W-Cu Alloy Rapid Prepared by Spark Plasma Sintering
,”
J. Alloys Compd.
,
775
, pp.
784
789
.
5.
Cao
,
J.
,
Liu
,
J. X.
,
Liu
,
X. W.
,
Li
,
S. K.
,
Hao
,
Z. H.
, and
Xue
,
X. Y.
,
2020
, “
Effect of the Distribution State of Transition Phase on the Mechanical Properties and Failure Mechanisms of the W–Mo–Cu Alloy by Tuning Elements Content
,”
J. Alloys Compd.
,
827
, pp.
154333
.
6.
Mohsin
,
I. U.
,
Lager
,
D.
,
Hohenauer
,
W.
,
Gierla
,
C.
, and
Danningera
,
H.
,
2012
, “
Finite Element Sintering Analysis of Metal Injection Molded Copper Brown Body Using Thermo-Physical Data and Kinetics
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
6
11
.
7.
Su
,
H. L.
, and
Johnson
,
D. L.
,
1996
, “
Master Sintering Curve: A Practical Approach to Sintering
,”
J. Am. Ceram. Soc.
,
79
(
12
), pp.
3211
3217
.
8.
Han
,
D.
,
Kim
,
K.
, and
Carlo
,
M.
,
2003
, “
Simulation of Anisotrophic Grain Growth in Liquid Phase Sintering
,”
J. Korean Phys. Soc.
,
42
, pp.
1058
1063
.
9.
Shao
,
W. Q.
,
Chen
,
S. O.
,
Li
,
D.
,
Cao
,
H. S.
,
Zhang
,
Y. C.
, and
Zhang
,
S. S.
,
2008
, “
Apparent Activation Energy for Densification of α-Al2O3 Powder at Constant Heating-Rate Sintering
,”
Bull. Mater. Sci.
,
31
(
6
), pp.
903
906
.
10.
Choron
,
D.
,
Marinel
,
S.
,
Pintault
,
B.
,
Beaudet-Savignat
,
S.
, and
Macaigne
,
R.
,
2015
, “
Construction of Master Sintering Curves to Understand the Effect of Na Addition on ZnO-Based Varistors
,”
J. Eur. Ceram. Soc.
,
35
(
15
), pp.
4195
4202
.
11.
Park
,
S. J.
,
Johnson
,
J. L.
,
Wu
,
Y. X.
,
Kwon
,
Y. S.
,
Lee
,
S.
, and
German
,
R. M.
,
2013
, “
Analysis of the Effect of Solubility on the Densification Behavior of Tungsten Heavy Alloys Using the Master Sintering Curve Approach
,”
Int. J. Refract. Met. Hard Mater.
,
37
, pp.
52
59
.
12.
Li
,
Y.
,
Feng
,
K. Q.
,
Wu
,
J. L.
, and
Ke
,
S. X.
,
2010
, “
Effects of Pressure on the Electric-Fieldassisted Rapid Sintering of W-Cu Alloy
,”
Electron. Compon. Mater.
,
29
(
1
), pp.
4
7
.
13.
Pouchly
,
V.
, and
Maca
,
K.
,
2019
, “
Master Sintering Curves of Two Different Alumina Powder Compacts
,”
Process. Appl. Ceram.
,
3
(
4
), pp.
177
180
.
14.
Ouyang
,
C. X.
,
Zhu
,
S. G.
,
Ma
,
J.
, and
Qu
,
H. X.
,
2012
, “
Master Sintering Curve of Nanocomposite WC-MgO Powder Compacts
,”
J. Alloys Compd.
,
518
, pp.
27
31
.
15.
Chen
,
S. X.
,
Zhang
,
H.
,
Zeng
,
X. X.
,
Liu
,
W. H.
, and
Wang
,
Z. F.
,
2008
, “
Research on Hot Compression and Densifying Law of Spray Deposition 5A06 Aluminum Alloy
,”
Mater. Heat Treat.
,
37
(
8
), pp.
18
21
.
16.
Zhang
,
X. Q.
,
Peng
,
Y. H.
, and
Ruan
,
X. Y.
,
1998
, “
Prediction of Surface Crack During Cylindrical Upsetting of Porous Materials by FEM
,”
J. Shanghai Jiaotong Univ.
,
32
(
5
), pp.
14
17
. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHJT805.003.htm
17.
Hou
,
H. L.
, and
Ren
,
X. P.
,
2001
, “
Finite Element Simulation to Extrusion Process for Compressible Materials
,”
Met. Form. Technol.
,
19
(
3
), pp.
4
8
. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JMCX200103001.htm
18.
Blaine
,
D. C.
,
Park
,
S. J.
, and
German
,
R. M.
,
2009
, “
Linearization of Master Sintering Curve
,”
J. Am. Ceram. Soc.
,
92
(
7
), pp.
1403
1409
.
19.
Liu
,
J.
,
Yang
,
Y.
,
Feng
,
K. Q.
, and
Lu
,
D.
,
2009
, “
Study on the Effect of Current on Reactive Sintering of the WC-Co Mixture Under an Electric Field
,”
J. Alloys Compd.
,
476
(
1–2
), pp.
207
212
.
20.
Frueh
,
T.
,
Ozer
,
I. O.
,
Poterala
,
S. F.
,
Lee
,
H.
,
Kupp
,
E. R.
,
Compson
,
C.
,
Atria
,
J.
, and
Messing
,
G. L.
,
2018
, “
A Critique of Master Sintering Curve Analysis
,”
J. Eur. Ceram. Soc.
,
38
(
4
), pp.
1030
1037
.
You do not currently have access to this content.