Abstract

The core parts with the characteristic of freeform surface are widely used in the major equipment of various fields. Cutting force is the most important physical quantity in the five-axis CNC machining process of core parts. Not only in micro-milling, but also in macro-milling, there is also an obvious size effect, especially in medium- and high-speed milling, which is frequently ignored. In this paper, the milling force prediction model for five-axis machining of a freeform surface with a ball-end mill considering the mesoscopic size effect is established. Based on the characteristics of cutting thickness in macro-milling, a new dislocation density correction form is proposed, and a new experiment is designed to identify the dislocation density correction coefficient. Therefore, the shear stress calculated in this paper not only reflects the cutting dynamic mechanical characteristics but also considers the mesoscopic size effect. A linear function is proposed to describe the relationship between friction coefficient and cutting speed, cutter rake angle, and cutting thickness. Considering cutter run-out, the micro-element cutting force in the shear zone and plough zone are analyzed. The cutting geometry contact between the freeform surface and the ball-end mill is analyzed analytically by the space limitation method. Finally, the total milling force is obtained by summing all the force vectors of cutting edge micro-elements within the in-cut cutting edge. In the five-axis machining experiment of freeform surface, the theoretically predicted results of milling forces are in good agreement with the measured results in trend and amplitude.

References

1.
Wu
,
B.
,
Luo
,
M.
, and
Zhang
,
Y.
,
2008
, “
Advances in Tool Path Planning Techniques for 5-Axis Machining of Sculptured Surfaces
,”
Chin. J. Mech. Eng.
,
44
(
10
), pp.
9
18
.
2.
Abou-El-Hossein
,
K. A.
,
Kadirgama
,
K.
,
Hamdi
,
M.
, and
Benyounis
,
K. Y.
,
2007
, “
Prediction of Cutting Force in end-Milling Operation of Modified AISI P20 Tool Steel
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
241
247
.
3.
Guo
,
M. L.
,
Wei
,
Z. C.
,
Wang
,
M. J.
,
Li
,
S.
, and
Liu
,
S.
,
2018
, “
An Identification Model of Cutting Force Coefficients for Five-Axis Ball-end Milling
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1–4
), pp.
937
949
.
4.
Shi
,
B.
,
Elsayed
,
A.
,
Damir
,
A.
,
Attia
,
H.
, and
M'Saoubi
,
R.
,
2019
, “
A Hybrid Modeling Approach for Characterization and Simulation of Cryogenic Machining of Ti-6Al-4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021021
.
5.
Wang
,
B. S.
, and
Hao
,
H. Y.
,
2010
, “
Cutting Force Induced Error Prediction and Compensation Based on Feed Servo Motor Current
,”
Appl. Mech. Mater.
,
44–47
(
1–4
), pp.
879
883
. www.scientific.net/AMM.44-47.879
6.
Wang
,
B.
,
Liu
,
Z.
,
Song
,
Q.
,
Wan
,
Y.
, and
Ren
,
X.
,
2019
, “
A Modified Johnson–Cook Constitutive Model and its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011012
.
7.
Li
,
G. H.
,
Wang
,
M. J.
, and
Duan
,
C. Z.
,
2009
, “
Adiabatic Shear Critical Condition in the High-Speed Cutting
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1362
1367
.
8.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.
9.
Samuel
,
J.
,
Jun
,
M. B. G.
, and
Ozdoganlar
,
B. O.
,
2020
, “
Micro/Meso-Scale Mechanical Machining 2020: A Two-Decade State-of-the-Field Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110809
.
10.
Backer
,
W. R.
,
Marshall
,
E. R.
, and
Shaw
,
M. C.
,
1952
, “
The Size Effect in Metal Cutting
,”
Trans. ASME
,
74
(
5
), pp.
61
72
.
11.
Joshi
,
S. S.
, and
Melkote
,
S. N.
,
2005
, “
An Explanation for the Size-Effect in Machining Using Strain Gradient Plasticity
,”
J. Manuf. Sci. Eng.
,
126
(
4
), pp.
679
684
.
12.
Ng
,
C. K.
,
Melkote
,
S. N.
,
Rahman
,
M.
, and
Kumar
,
A. S.
,
2006
, “
Experimental Study of Micro- and Nano-Scale Cutting of Aluminum 7075-T6
,”
Int. J. Mach. Tool Manuf.
,
46
(
9
), pp.
929
936
.
13.
Li
,
H. T.
,
2008
,
Mechanism Studies and Process Optimization of Meso Scale Milling Process
,
Shanghai Jiao Tong University
.
14.
Wu
,
J.
, and
Liu
,
Z.
,
2010
, “
Modeling of Flow Stress in Orthogonal Micro-Cutting Process Based on Strain Gradient Plasticity Theory
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
143
149
.
15.
Zhang
,
T.
,
Liu
,
Z.
,
Shi
,
Z.
, and
Xu
,
C.
,
2017
, “
Investigation on Size Effect of Specific Cutting Force and Machined Surface Quality in Micro Cutting
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2621
2633
.
16.
Pang
,
Y. C.
, and
Li
,
R.
,
2010
, “
The Application of fem in Micro-Cutting and the Study of key Technique
,”
Key Eng. Mater.
,
431–432
(
5
), pp.
564
567
. www.scientific.net/KEM.431-432.564
17.
Zhou
,
L.
,
2017
,
A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Engineering
,
Huazhong University of Science and Technology
.
18.
Shen
,
Y.
,
2018
,
Theoretical Study on Dynamic Characteristics and Flutter Stability of Micro-end Mill Incorporating Gradient Effect
,
Huazhong University of Science and Technology
.
19.
Fu
,
Z.
,
Yang
,
W.
,
Wang
,
X.
, and
Leopold
,
J.
,
2016
, “
An Analytical Force Model for Ball-end Milling Based on a Predictive Machining Theory Considering Cutter Runout
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
2449
2460
.
20.
Ding
,
H.
, and
Shin
,
Y.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
21.
Le
,
B.
,
Khaliq
,
J.
,
Huo
,
D.
,
Teng
,
X.
, and
Shyha
,
I.
,
2020
, “
A Review on Nanocomposites. Part 2: Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
100802
.
22.
Yang
,
Y.
,
Zhang
,
W.
,
Wan
,
M.
, and
Ma
,
Y.
,
2013
, “
A Solid Trimming Method to Extract Cutter-Workpiece Engagement Maps for Multi-Axis Milling
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2801
2813
.
23.
Boz
,
Y.
,
Erdim
,
H.
, and
Lazoglu
,
I.
,
2011
, “
Modeling Cutting Forces for 5-Axis Machining of Sculptured Surfaces
,”
Adv. Mater. Res.
,
223
, pp.
701
712
.
24.
Aras
,
E.
, and
Albedah
,
A.
,
2014
, “
Extracting Cutter/Workpiece Engagements in Five-Axis Milling Using Solid Modeler
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1351
1362
.
25.
Wang
,
J. R.
,
Luo
,
M.
, and
Xu
,
K.
,
2020
, “
Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031001
.
26.
Wei
,
Z. C.
,
Wang
,
M. J.
,
Zhu
,
J. N.
, and
Gu
,
L. Y.
,
2011
, “
Cutting Force Prediction in Ball end Milling of Sculptured Surface with Z-Level Contouring Tool Path
,”
Int. J. Mach. Tool Manuf.
,
51
(
5
), pp.
428
432
.
27.
Li
,
J. H.
,
Murat Kilic
,
Z.
, and
Altintas
,
Y.
,
2020
, “
General Cutting Dynamics Model for Five-Axis Ball-end Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121003
.
28.
Sun
,
Y.
, and
Guo
,
Q.
,
2011
, “
Numerical Simulation and Prediction of Cutting Forces in Five-Axis Milling Processes With Cutter Run-Out
,”
Int. J. Mach. Tool Manuf.
,
51
(
10–11
), pp.
806
815
.
29.
Wang
,
S. B.
,
Geng
,
L.
,
Zhang
,
Y. F.
,
Liu
,
K.
, and
Ng
,
T. E.
,
2015
, “
Cutting Force Prediction for Five-Axis Ball-end Milling Considering Cutter Vibrations and Run-Out
,”
Int. J. Mech. Sci.
,
96–97
, pp.
206
215
.
30.
Liu
,
G.
,
Dang
,
J.
,
Ming
,
W.
,
An
,
Q.
,
Chen
,
M.
, and
Li
,
H.
,
2019
, “
High-quality Machining of Edges of Thin-Walled Plates by Tilt Side Milling Based on an Analytical Force Based Model
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061008
.
31.
Wei
,
Z. C.
,
Guo
,
M. L.
,
Wang
,
M. J.
,
Li
,
S. Q.
, and
Liu
,
S. X.
,
2018
, “
Force Predictive Model for Five-Axis Ball end Milling of Sculptured Surface
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5–8
), pp.
1367
1377
.
32.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
.
33.
Denkena
,
B.
, and
Toenshoff
,
H. K.
,
2011
, “Spanen-Grundlagen,” Book name in English language:
Chip Removal-Fundamentals
,
Springer-Verlag
,
Berlin
, p.
56
.
34.
Salehi
,
M.
,
Schmitz
,
T. L.
,
Copenhaver
,
R.
,
Haas
,
R.
, and
Ovtcharova
,
J.
,
2019
, “
Probabilistic Sequential Prediction of Cutting Force Using Kienzle Model in Orthogonal Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011009
.
35.
Wan
,
M.
,
Zhang
,
W. H.
,
Tan
,
G.
, and
Qin
,
G. H.
,
2007
, “
New Algorithm for Calibration of Instantaneous Cutting-Force Coefficients and Radial run-out Parameters in Flat end Milling
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
6
), pp.
1007
1019
.
36.
Wang
,
M.
,
Wang
,
J.
,
Zheng
,
Y.
, and
Li
,
X.
,
2016
, “
The Finite Element Simulation of GH4169 Three-Dimension Turning Cutting Force and Temperature
,”
Mod. Manuf. Eng.
,
38
(
8
), pp.
106
111
.
37.
Taylor
,
G. I.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical
,”
Proc. R. Soc. A
,
145
(
855
), pp.
362
387
.
38.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
39.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.
40.
Sagapuram
,
D.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Mann
,
J. B.
,
M’Saoubi
,
R.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
On the Cutting of Metals: a Mechanics Viewpoint
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110808
.
41.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
322
330
.
42.
Loewen
,
E. G.
, and
Shaw
,
M. C.
,
1954
, “
On the Analysis of Cutting-Tool Temperatures
,”
Trans. ASME
,
76
(
2
), pp.
217
225
.
43.
Lee
,
P.
, and
Altintas
,
Y.
,
1996
, “
Prediction of Ball-end Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
44.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-line Field Model of Micro-Cutting Process with Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
45.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME. J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.
46.
Chen
,
M. S.
,
Sun
,
Y. W.
, and
Xu
,
J.
,
2020
, “
A new Analytical Path-Reshaping Model and Solution Algorithm for Contour Error pre-Compensation in Multi-Axis CNC Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061006
.
47.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
48.
Schmid
,
S. R.
,
Saha
,
P. K.
,
Wang
,
J.
, and
Schmitz
,
T.
,
2020
, “
Developments in Tribology of Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110803
.
49.
Ozlu
,
E.
,
Budak
,
E.
, and
Molinari
,
A.
,
2009
, “
Analytical and Experimental Investigation of Rake Contact and Friction Behavior in Metal Cutting
,”
Int. J. Mach. Tool Manuf.
,
49
(
11
), pp.
865
875
.
You do not currently have access to this content.