Abstract

A new approach to precision electroforming of a wafer scale nickel shim using a rotating cathode with an auxiliary cathode mask is developed to improve thickness uniformity and flatness. The effects of critical process parameters, including cathode rotating speed, cathode mask size, and current density, on the thickness uniformity and flatness of electroformed nickel shim are systematically studied based on experiments and simulations. The results show that the thickness uniformity of the deposits is highly dependent on the current density distribution, where a cathode mask can effectively tune electrical field lines and induce a more uniform current density distribution. The simulations and experimental results consistently agree that a minimum thickness nonuniformity of 8% and below 1% on the wafer with a diameter of 80 mm and 40 mm, respectively, can be achieved using a mask with a 70 mm opening size. However, for flatness, the cathode rotating speed influences the surface warpage due to the intrinsic stress. It is also found that the gradient current density can significantly reduce the intrinsic stress with better flatness. The best flatness is controlled below 47 µm and 32 µm on the wafer with diameters of 80 mm and 40 mm, respectively, under the synergistic effect of optimal cathode rotating speed (30 rpm) and gradient current density.

References

1.
Hou
,
J.
,
Zhang
,
H.
,
Zhang
,
N.
, and
Fang
,
F.
,
2019
, “
Characterization of Manufacturability of Microstructures for Micro-Injection Moulding of Micro Devices Using Star Patterns
,”
J. Micromech. Microeng.
,
30
(
2
), p.
025001
.
2.
Zhang
,
H.
,
Zhang
,
H.
,
Guan
,
T.
,
Wang
,
X.
, and
Zhang
,
N.
,
2021
,
Advances in Micro-and Nanofluidics
,
IntechOpen
,
London
.
3.
Zhang
,
N.
,
Srivastava
,
A.
,
Kirwan
,
B.
,
Byrne
,
R.
,
Fang
,
F.
,
Browne
,
D. J.
, and
Gilchrist
,
M. D.
,
2015
, “
Manufacturing Microstructured Tool Inserts for the Production of Polymeric Microfluidic Devices
,”
J. Micromech. Microeng.
,
25
(
9
), p.
095005
.
4.
Sharma
,
A.
,
Joshi
,
S. S.
,
Datta
,
D.
, and
Balasubramaniam
,
R.
,
2020
, “
Investigation of Tool and Workpiece Interaction on Surface Quality While Diamond Turning of Copper Beryllium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021011
.
5.
Lei
,
S.
,
Zhao
,
X.
,
Yu
,
X.
,
Hu
,
A.
,
Vukelic
,
S.
,
Jun
,
M. B.
,
Joe
,
H.-E.
,
Yao
,
Y. L.
, and
Shin
,
Y. C.
,
2020
, “
Ultrafast Laser Applications in Manufacturing Processes: A State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031005
.
6.
Xu
,
Z.
,
Ouyang
,
W.
,
Jia
,
S.
,
Jiao
,
J.
,
Zhang
,
M.
, and
Zhang
,
W.
,
2020
, “
Cracks Repairing by Using Laser Additive and Subtractive Hybrid Manufacturing Technology
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031006
.
7.
Du
,
L.
,
Yang
,
T.
,
Zhao
,
M.
,
Tao
,
Y.
,
Luo
,
L.
,
Wang
,
L.
, and
Liu
,
C.
,
2016
, “
Study on Improving Thickness Uniformity of Microfluidic Chip Mold in the Electroforming Process
,”
Micromachines
,
7
(
1
), p.
7
.
8.
Yang
,
H.
, and
Kang
,
S.-W.
,
2000
, “
Improvement of Thickness Uniformity in Nickel Electroforming for the LIGA Process
,”
Int. J. Mach. Tools Manuf.
,
40
(
7
), pp.
1065
1072
.
9.
Zhang
,
H.
,
Zhang
,
N.
,
Gilchrist
,
M.
, and
Fang
,
F.
,
2020
, “
Advances in Precision Micro/Nano-Electroforming: A State-of-the-Art Review
,”
J. Micromech. Microeng.
,
30
(
10
), p.
103002
.
10.
Shih
,
C.-J.
,
Lin
,
W.-C.
,
Lin
,
C.-S.
,
Ou
,
S.-F.
, and
Pan
,
Y.-N.
,
2013
, “
Fabrication of Diamond Conditioners by Using a Micro Patterning and Electroforming Approach
,”
Microelectron. Eng.
,
103
, pp.
92
98
.
11.
Tan
,
Y.-J.
, and
Lim
,
K. Y.
,
2003
, “
Understanding and Improving the Uniformity of Electrodeposition
,”
Surf. Coat. Technol.
,
167
(
2–3
), pp.
255
262
.
12.
Kim
,
J.
,
Han
,
J.
,
Kim
,
T.
, and
Kang
,
S.
,
2014
, “
Fabrication of a Metallic Roll Stamp With Low Internal Stress and High Hardness for Large Area Display Applications by a Pulse Reverse Current Electroforming Process
,”
J. Micromech. Microeng.
,
24
(
12
), p.
125004
.
13.
Li
,
J.-d.
,
Zhang
,
P.
,
Wu
,
Y.-h.
,
Liu
,
Y.-s.
, and
Xuan
,
M.
,
2009
, “
Uniformity Study of Nickel Thin-Film Microstructure Deposited by Electroplating
,”
Microsyst. Technol.
,
15
(
4
), pp.
505
510
.
14.
Park
,
C.-W.
, and
Park
,
K.-Y.
,
2014
, “
An Effect of Dummy Cathode on Thickness Uniformity in Electroforming Process
,”
Results Phys.
,
4
, pp.
107
112
.
15.
Zhao
,
M.
,
Du
,
L.
,
Wei
,
Z.
,
Du
,
C.
,
Liu
,
X.
, and
Ji
,
X.
,
2018
, “
Fabrication of Metal Microfluidic Chip Mold With Coplanar Auxiliary Cathode in the Electroforming Process
,”
J. Micromech. Microeng.
,
29
(
2
), p.
025002
.
16.
Kim
,
I.
, and
Mentone
,
P. F.
,
2006
, “
Electroformed Nickel Stamper for Light Guide Panel in LCD Back Light Unit
,”
Electrochim. Acta
,
52
(
4
), pp.
1805
1809
.
17.
Jensen
,
J. A.
,
Pocwiardowski
,
P.
,
Persson
,
P. O.
,
Hultman
,
L.
, and
Møller
,
P.
,
2003
, “
Acoustic Streaming Enhanced Electrodeposition of Nickel
,”
Chem. Phys. Lett.
,
368
(
5–6
), pp.
732
737
.
18.
Ming
,
P. M.
,
Zhu
,
D.
,
Hu
,
Y. Y.
, and
Zeng
,
Y. B.
,
2008
, “
Experimental Research on Microelectroforming With Ultrasonic Agitation
,”
Key Eng. Mater.
, pp.
253
257
.
19.
Zhang
,
H.
,
Zhang
,
N.
, and
Fang
,
F.
,
2020
, “
Fabrication of High-Performance Nickel/Graphene Oxide Composite Coatings Using Ultrasonic-Assisted Electrodeposition
,”
Ultrason. Sonochem.
,
62
, p.
104858
.
20.
Zhao
,
M.
,
Du
,
L.
,
Xu
,
Z.
,
Zhang
,
X.
,
Cao
,
Q.
,
Ji
,
X.
,
Wei
,
Z.
, and
Liu
,
J.
,
2020
, “
Improving the Thickness Uniformity of Micro Electroforming Layer by Megasonic Agitation and the Application
,”
Mater. Chem. Phys.
,
239
, p.
122331
.
21.
Zhai
,
K.
,
Du
,
L.
,
Wang
,
W.
,
Zhu
,
H.
,
Zhao
,
W.
, and
Zhao
,
W.
,
2018
, “
Research of Megasonic Electroforming Equipment Based on the Uniformity of Electroforming Process
,”
Ultrason. Sonochem.
,
42
, pp.
368
375
.
22.
Qu
,
N.
,
Chan
,
K.
, and
Zhu
,
D.
,
1997
, “
Surface Roughening in Pulse Current and Pulse Reverse Current Electroforming of Nickel
,”
Surf. Coat. Technol.
,
91
(
3
), pp.
220
224
.
23.
Zhu
,
Z.-W.
,
Zhu
,
D.
,
Qu
,
N.-S.
,
Wang
,
K.
, and
Yang
,
J.-M.
,
2008
, “
Electroforming of Revolving Parts With Near-Polished Surface and Uniform Thickness
,”
Int. J. Adv. Manuf. Technol.
,
39
(
11–12
), pp.
1164
1170
.
24.
Broadbent
,
E. K.
,
2000
, “
Electroplating System With Shields for Varying Thickness Profile of Deposited Layer
,” Google Patents.
25.
Zhang
,
H.
,
Zhang
,
N.
, and
Fang
,
F.
,
2020
, “
Synergistic Effect of Surfactant and Saccharin on Dispersion and Crystal Refinement for Electrodeposition of Nanocrystalline Nickel/Graphene Oxide Composite
,”
Surf. Coat. Technol.
,
402
, p.
126292
.
26.
Zhang
,
H.
,
Zhang
,
N.
, and
Fang
,
F.
,
2020
, “
Electrodeposition of Nickel/Graphene Oxide Particle Composite Coatings: Effect of Surfactants on Graphene Oxide Dispersion and Coating Performance
,”
J. Electrochem. Soc.
,
167
(
16
), p.
162501
.
27.
Thakur
,
C.
,
Alqosaibi
,
K.
,
Kundu
,
A.
, and
Coulter
,
J. P.
,
2020
, “
Development of Advanced Hybrid Polymer Melt Delivery Systems for Efficient High Precision Injection Molding
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071004
.
28.
Liu
,
X.
,
Zhang
,
L.
,
Zhou
,
W.
,
Zhou
,
T.
,
Yu
,
J.
,
Lee
,
L. J.
, and
Yi
,
A. Y.
,
2019
, “
Fabrication of Plano-Concave Plastic Lens by Novel Injection Molding Using Carbide-Bonded Graphene-Coated Silica Molds
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081011
.
29.
Zhang
,
N.
,
Liu
,
J.
,
Zhang
,
H.
,
Kent
,
N. J.
,
Diamond
,
D.
, and
Gilchrist
,
M. D.
,
2019
, “
3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices
,”
Micromachines
,
10
(
9
), p.
595
.
30.
Chen
,
Z.
,
Xu
,
X.
,
Wong
,
C. C.
, and
Mhaisalkar
,
S.
,
2003
, “
Effect of Plating Parameters on the Intrinsic Stress in Electroless Nickel Plating
,”
Surf. Coat. Technol.
,
167
(
2–3
), pp.
170
176
.
31.
Chen
,
C.-J.
, and
Lin
,
K.-L.
,
2000
, “
Internal Stress and Adhesion of Amorphous Ni–Cu–P Alloy on Aluminum
,”
Thin Solid Films
,
370
(
1–2
), pp.
106
113
.
32.
Zhang
,
H.
,
Zhang
,
N.
, and
Fang
,
F.
,
2021
, “
Investigation of Mass Transfer Inside Micro Structures and Its Effect on Replication Accuracy in Precision Micro Electroforming
,”
Int. J. Mach. Tools Manuf.
,
165
, p.
103717
.
33.
Rosales
,
M.
,
Pérez
,
T.
, and
Nava
,
J. L.
,
2016
, “
Computational Fluid Dynamic Simulations of Turbulent Flow in a Rotating Cylinder Electrode Reactor in Continuous Mode of Operation
,”
Electrochim. Acta
,
194
, pp.
338
345
.
34.
Grande
,
W. C.
, and
Talbot
,
J. B.
,
1993
, “
Electrodeposition of Thin Films of Nickel-Iron: II. Modeling
,”
J. Electrochem. Soc.
,
140
(
3
), p.
675
.
35.
Low
,
C.
,
Roberts
,
E.
, and
Walsh
,
F.
,
2007
, “
Numerical Simulation of the Current, Potential and Concentration Distributions Along the Cathode of a Rotating Cylinder Hull Cell
,”
Electrochim. Acta
,
52
(
11
), pp.
3831
3840
.
36.
Belov
,
I.
,
Zanella
,
C.
,
Edström
,
C.
, and
Leisner
,
P.
,
2016
, “
Finite Element Modeling of Silver Electrodeposition for Evaluation of Thickness Distribution on Complex Geometries
,”
Mater. Des.
,
90
, pp.
693
703
.
37.
Su
,
Y. Z.
,
Fu
,
Y. C.
,
Wei
,
Y. M.
,
Yan
,
J. W.
, and
Mao
,
B. W.
,
2010
, “
The Electrode/Ionic Liquid Interface: Electric Double Layer and Metal Electrodeposition
,”
ChemPhysChem
,
11
(
13
), pp.
2764
2778
.
38.
Dai
,
W.
,
Lin
,
L.
,
Li
,
Y.
,
Li
,
F.
, and
Chen
,
L.
,
2019
, “
Hydrogen Evolution Reaction in Alkaline Media on Ni–S–Co Electrode With Hierarchical Morphology Prepared by Gradient Electrodeposition
,”
Int. J. Hydrogen Energy
,
44
(
54
), pp.
28746
28756
.
39.
Evans
,
A.
, and
Hutchinson
,
J.
,
1995
, “
The Thermomechanical Integrity of Thin Films and Multilayers
,”
Acta Metall. Mater.
,
43
(
7
), pp.
2507
2530
.
40.
Tang
,
P. T.
,
1998
,
Fabrication of Micro Components by Electrochemical Deposition
,
IPT
,
Lyngby
.
41.
Chen
,
Z.
,
Zhu
,
C.
,
Cai
,
M.
,
Yi
,
X.
, and
Li
,
J.
,
2020
, “
Growth and Morphology Tuning of Ordered Nickel Nanocones Routed by One-Step Pulse Electrodeposition
,”
Appl. Surf. Sci.
,
508
, p.
145291
.
42.
Pérez
,
T.
,
Arenas
,
L. F.
,
Villalobos-Lara
,
D.
,
Zhou
,
N.
,
Wang
,
S.
,
Walsh
,
F. C.
,
Nava
,
J. L.
, and
de León
,
C. P.
,
2020
, “
Simulations of Fluid Flow, Mass Transport and Current Distribution in a Parallel Plate Flow Cell During Nickel Electrodeposition
,”
J. Electroanal. Chem.
,
873
, p.
114359
.
43.
Kume
,
T.
,
Egawa
,
S.
,
Yamaguchi
,
G.
, and
Mimura
,
H.
,
2016
, “
Influence of Residual Stress of Electrodeposited Layer on Shape Replication Accuracy in Ni Electroforming
,”
Procedia CIRP
,
42
, pp.
783
787
.
44.
Du
,
L.
,
Zhai
,
K.
,
Wang
,
S.
,
Zhang
,
X.
,
Cao
,
Q.
,
Wen
,
Y.
,
Zhao
,
W.
, and
Liu
,
J.
,
2020
, “
Evaluation of Residual Stress of Metal Micro Structure Electroformed With Megasonic Agitation
,”
J. Manuf. Process.
,
59
, pp.
629
635
.
45.
Song
,
C.
,
Du
,
L.
, and
Ji
,
X.
,
2018
, “
Reducing the Residual Stress in Micro Electroforming Layer by Megasonic Agitation
,”
Ultrason. Sonochem.
,
49
, pp.
233
240
.
46.
Kume
,
T.
,
Egawa
,
S.
, and
Mimura
,
H.
,
2016
, “
Development of Internal Stress Measurement Technique for Ni Electroforming Using Shack. Hartmann Sensor
,”
Int. J. Electr. Mach.
,
21
, pp.
25
30
.
47.
Saitou
,
M.
,
Oshiro
,
S.
, and
Sagawa
,
Y.
,
2008
, “
Scaling Behavior of Internal Stress in Electrodeposited Nickel Thin Films
,”
J. Appl. Phys.
,
104
(
9
), p.
093518
.
48.
Rashidi
,
A.
, and
Amadeh
,
A.
,
2008
, “
The Effect of Current Density on the Grain Size of Electrodeposited Nanocrystalline Nickel Coatings
,”
Surf. Coat. Technol.
,
202
(
16
), pp.
3772
3776
.
49.
Hearne
,
S. J.
, and
Floro
,
J. A.
,
2005
, “
Mechanisms Inducing Compressive Stress During Electrodeposition of Ni
,”
J. Appl. Phys.
,
97
(
1
), p.
014901
.
50.
Pathak
,
S.
,
Guinard
,
M.
,
Vernooij
,
M. G.
,
Cousin
,
B.
,
Wang
,
Z.
,
Michler
,
J.
, and
Philippe
,
L.
,
2011
, “
Influence of Lower Current Densities on the Residual Stress and Structure of Thick Nickel Electrodeposits
,”
Surf. Coat. Technol.
,
205
(
12
), pp.
3651
3657
.
You do not currently have access to this content.