Abstract

As the cutting force plays an important role in machining, the modeling of cutting force has drawn considerable interests in recent years. However, most of current methods were focused on the deterministic modeling of cutting force, while the inherent stochasticity of cutting force is rarely considered for general metal cutting machining. Thus, a stochastic model is proposed in this paper to predict the stochastic cutting force by considering realistic cutting conditions, including the inhomogeneity of cutting material and the multi-mode machining system. Specifically, we transform the constant cutting coefficient in previous models into a stationary Gaussian process in the proposed stochastic model. As for the tool vibration, the uncut chip thickness is also modeled in a stochastic manner. Moreover, it is found that the random cutting coefficients can be estimated conveniently through experiments and effectively simulated by stochastic differential equations at any timescale. Then, the stochastic cutting force can be predicted numerically by combining the stochastic model and the multi-mode dynamic equations. For verification, a three-mode machining system was set up, and workpieces with different metal alloys were tested. It is found that the random cutting coefficients estimated are insensitive to cutting parameters, and the prediction results show satisfactory agreement with experimental results in both time and statistical domains. The proposed method can provide rich statistical information of cutting forces, which can facilitate related applications like tool condition monitoring when the on-line measurement of cutting force is not preferred or even impossible.

References

1.
Choudhury
,
S. K.
, and
Kishore
,
K. K.
,
2000
, “
Tool Wear Measurement in Turning Using Force Ratio
,”
Int. J. Mach. Tools Manuf.
,
40
(
6
), pp.
899
909
. 10.1016/S0890-6955(99)00088-7
2.
Benardos
,
P. G.
,
Mosialos
,
S.
, and
Vosniakos
,
G. C.
,
2006
, “
Prediction of Workpiece Elastic Deflections Under Cutting Forces in Turning
,”
Robot. Cim-Int. Manuf.
,
22
(
5
), pp.
505
514
. 10.1016/j.rcim.2005.12.009
3.
López
,
L. N.
,
Lamikiz
,
A.
,
Sánchez
,
J. A.
, and
Salgado
,
M. A.
,
2007
, “
Toolpath Selection Based on the Minimum Deflection Cutting Forces in the Programming of Complex Surfaces Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
388
400
. 10.1016/j.ijmachtools.2006.03.010
4.
Lin
,
W. S.
,
Lee
,
B. Y.
, and
Wu
,
C. L.
,
2001
, “
Modeling the Surface Roughness and Cutting Force for Turning
,”
J. Mater. Process. Tech.
,
108
(
3
), pp.
286
293
. 10.1016/S0924-0136(00)00835-9
5.
Kaymakci
,
M. Z.
,
Kilic
,
M.
, and
Altintas
,
Y.
,
2012
, “
Unified Cutting Force Model for Turning, Boring, Drilling and Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
54–55
(
1
), pp.
34
45
. 10.1016/j.ijmachtools.2011.12.008
6.
Zhang
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
,
Pang
,
B.
, and
Zhao
,
W.
,
2017
, “
General Modeling and Calibration Method for Cutting Force Prediction With Flat-End Cutter
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021007
. 10.1115/1.4038371
7.
Toropov
,
A.
, and
Ko
,
S.
,
2003
, “
Prediction of Tool-Chip Contact Length Using a New Slip-Line Solution for Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
,
43
(
12
), pp.
1209
1215
. 10.1016/S0890-6955(03)00155-X
8.
Zhuang
,
K.
,
Weng
,
J.
,
Zhu
,
D.
, and
Ding
,
H.
,
2018
, “
Analytical Modeling and Experimental Validation of Cutting Forces Considering Edge Effects and Size Effects With Round Chamfered Ceramic Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081012
. 10.1115/1.4040087
9.
Szecsi
,
T.
,
1999
, “
Cutting Force Modeling Using Artificial Neural Networks
,”
J. Mater. Process. Tech.
,
92–93
(
1
), pp.
344
349
. 10.1016/S0924-0136(99)00183-1
10.
Chang
,
H.
, and
Wang
,
J. J.
,
2008
, “
A Stochastic Grinding Force Model Considering Random Grit Distribution
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1335
1344
. 10.1016/j.ijmachtools.2008.05.012
11.
Wiercigroch
,
M.
, and
Cheng
,
A. H.
,
1997
, “
Chaotic and Stochastic Dynamics of Orthogonal Metal Cutting
,”
Chaos, Solitons Fractals
,
8
(
4
), pp.
715
726
. 10.1016/S0960-0779(96)00111-7
12.
Gradisek
,
I.
,
Grabec
,
S.
, and
Siegert
,
R.
,
2002
, “
Stochastic Dynamics of Metal Cutting: Bifurcation Phenomena in Turning
,”
Mech. Syst. Signal. Pr.
,
16
(
5
), pp.
831
840
. 10.1006/mssp.2001.1403
13.
Gradišek
,
J.
,
Friedrich
,
R.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2002
, “
Analysis of Data From Periodically Forced Stochastic Processes
,”
Phys. Lett. A
,
294
(
3
), pp.
234
238
. 10.1016/S0375-9601(02)00060-9
14.
Sykora
,
H. T.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2018
, “
Gaussian Noise Process as Cutting Force Model for Turning
,”
Procedia. CIRP
,
77
(
1
), pp.
94
97
. 10.1016/j.procir.2018.08.229
15.
Ullah
,
A. M. M. S.
, and
Harib
,
K. H.
,
2010
, “
Simulation of Cutting Force Using Nonstationary Gaussian Process
,”
J. Intell. Manuf.
,
21
(
6
), pp.
681
691
. 10.1007/s10845-009-0245-2
16.
Youn
,
J.
, and
Yang
,
M.
,
2001
, “
A Study on the Relationships Between Static/Dynamic Cutting Force Components and Tool Wear
,”
ASME J. Manuf. Sci. Eng.
,
123
(
2
), pp.
196
205
. 10.1115/1.1362321
17.
Tangjitsitcharoen
,
S.
,
2009
, “
In-Process Monitoring and Detection of Chip Formation and Chatter for CNC Turning
,”
J. Mater. Process. Tech.
,
209
(
10
), pp.
4682
4688
. 10.1016/j.jmatprotec.2008.10.054
18.
García
,
E.
, and
Núñez
,
P. J.
,
2018
, “
Analysis of Cutting Force Signals by Wavelet Packet Transform for Surface Roughness Monitoring in CNC Turning
,”
Mech. Syst. Signal. Pr.
,
98
(
1
), pp.
634
651
. 10.1016/j.ymssp.2017.05.006
19.
Cao
,
H.
,
Zhou
,
K.
,
Chen
,
X.
, and
Zhang
,
X.
,
2017
, “
Early Chatter Detection in End Milling Based on Multi-Feature Fusion and 3σ Criterion
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4387
4397
. 10.1007/s00170-017-0476-x
20.
Zhang
,
Z.
,
Li
,
H.
,
Meng
,
G.
,
Tu
,
X.
, and
Cheng
,
C.
,
2016
, “
Chatter Detection in Milling Process Based on the Energy Entropy of VMD and WPD
,”
Int. J. Mach. Tools Manuf.
,
108
(
1
), pp.
106
112
. 10.1016/j.ijmachtools.2016.06.002
21.
Khasawneh
,
F. A.
, and
Munch
,
E.
,
2016
, “
Chatter Detection in Turning Using Persistent Homology
,”
Mech. Syst. Signal. Pr.
,
70–71
(
1
), pp.
527
541
. 10.1016/j.ymssp.2015.09.046
22.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
. 10.1016/j.ijmachtools.2011.01.001
23.
Siddhpura
,
M.
, and
Paurobally
,
R.
,
2012
, “
A Review of Chatter Vibration Research in Turning
,”
Int. J. Mach. Tools Manuf.
,
61
(
1
), pp.
27
47
. 10.1016/j.ijmachtools.2012.05.007
24.
Fu
,
Z.
,
Chen
,
X.
,
Mao
,
J.
, and
Xiong
,
T.
,
2018
, “
An Analytical Force Mode Applied to Three-Dimensional Turning Based on a Predictive Machining Theory
,”
Int. J. Mech. Sci.
,
136
(
1
), pp.
94
105
. 10.1016/j.ijmecsci.2017.12.021
25.
Mei
,
J.
,
Diaz
,
O. G.
, and
Axinte
,
D. A.
,
2017
, “
An Approach on Capturing the Influence of the Stochasticity of Fibre Distributions for Modelling the Variability of Cutting Forces in Composite Materials
,”
Compos. Part B
,
125
(
1
), pp.
27
38
. 10.1016/j.compositesb.2017.05.056
26.
Mei
,
J.
,
Diaz
,
O. G.
, and
Axinte
,
D. A.
,
2019
, “
Modelling the Unidirectional Fibre Composite Milling Force Oscillations Through Capturing the Influence of the Stochastic Fibre Distributions
,”
Compos. Struct.
,
226
(
1
), pp.
111
188
. 10.1016/j.compstruct.2019.111188
27.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
2003
, “
On the Mechanics of the Grinding Process—Part I. Stochastic Nature of the Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
43
(
15
), pp.
1579
1593
. 10.1016/S0890-6955(03)00186-X
28.
Lipski
,
J.
,
Litak
,
G.
,
Rusinek
,
R.
,
Szabelski
,
K.
, and
Teter
,
A.
,
2002
, “
Surface Quality of Quality of a Work Material’s Influence on the Vibrations of the Cutting Process
,”
J. Sound. Vib.
,
252
(
4
), pp.
729
737
. 10.1006/jsvi.2001.3943
29.
Salehi
,
M.
,
Schmitz
,
T. L.
,
Copenhaver
,
R.
,
Haas
,
R.
, and
Ovtcharova
,
J.
,
2019
, “
Probabilistic Sequential Prediction of Cutting Force Using Kienzle Model in Orthogonal Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011009
. 10.1115/1.4041710
30.
Zhang
,
S. J.
, and
To
,
S.
,
2013
, “
A Theoretical and Experimental Investigation Into Multi-Mode Tool Vibration With Surface Generation in Ultra-Precision Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
72
(
1
), pp.
32
36
. 10.1016/j.ijmachtools.2013.05.005
31.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
32.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Anns.
,
57
(
1
), pp.
371
374
. 10.1016/j.cirp.2008.03.048
33.
Rusinek
,
R.
,
Wiercigroch
,
M.
, and
Wahi
,
P.
,
2014
, “
Modelling of Frictional Chatter in Metal Cutting
,”
Int. J. Mech. Sci.
,
89
(
1
), pp.
167
176
. 10.1016/j.ijmecsci.2014.08.020
34.
Altintas
,
Y.
, and
Merdol
,
S. D.
,
2007
, “
Virtual High Performance Milling
,”
CIRP Ann.
,
56
(
1
), pp.
81
84
. 10.1016/j.cirp.2007.05.022
35.
Sykora
,
H. T.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2017
, “
A Theoretical Investigation of the Effect of the Stochasticity in the Material Properties on the Chatter Detection During Turning
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
.
36.
Rao
,
B. C.
, and
Shin
,
Y. C.
,
1999
, “
A Comprehensive Dynamic Cutting Force Model for Chatter Prediction in Turning
,”
Int. J. Mach. Tools Manuf.
,
39
(
10
), pp.
1631
1654
. 10.1016/S0890-6955(99)00007-3
37.
He
,
C. L.
,
Zong
,
W. J.
,
Xue
,
C. X.
, and
Sun
,
T.
,
2018
, “
An Accurate 3D Surface Topography Model for Single-Point Diamond Turning
,”
Int. J. Mach. Tools Manuf.
,
134
(
1
), pp.
42
68
. 10.1016/j.ijmachtools.2018.07.004
38.
Zárate-Miñano
,
R.
, and
Milano
,
F.
,
2016
, “
Construction of SDE-Based Wind Speed Models With Exponentially Decaying Autocorrelation
,”
Renew. Energy
,
94
(
1
), pp.
186
196
. 10.1016/j.renene.2016.03.026
39.
Wang
,
S. B.
,
Geng
,
L.
,
Zhang
,
Y. F.
,
Liu
,
K.
, and
Ng
,
T. E.
,
2015
, “
Cutting Force Prediction for Five-Axis Ball-End Milling Considering Cutter Vibrations and Run-Out
,”
Int. J. Mech. Sci.
,
96–97
(
1
), pp.
206
215
. 10.1016/j.ijmecsci.2015.04.007
40.
Zárate-Miñano
,
R.
,
Anghel
,
M.
, and
Milano
,
F.
,
2013
, “
Continuous Wind Speed Models Based on Stochastic Differential Equations
,”
Appl. Energy
,
104
(
1
), pp.
42
49
. 10.1016/j.apenergy.2012.10.064
41.
Mao
,
X.
,
2007
,
Stochastic Differential Equations and Applications
,
Elsevier
,
New York
.
42.
Higham
,
D. J.
,
2001
, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
,
43
(
3
), pp.
525
546
. 10.1137/S0036144500378302
43.
Wang
,
X.
,
Williams
,
R. E.
,
Sealy
,
M. P.
,
Rao
,
P. K.
, and
Guo
,
Y.
,
2018
, “
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111011
. 10.1115/1.4040728
44.
Sakata
,
S.
,
Kadota
,
T.
,
Yamada
,
Y.
,
Nakanishi
,
K.
,
Yoshioka
,
H.
,
Suzuki
,
N.
, and
Kakinuma
,
Y.
,
2018
, “
Chatter Avoidance in Parallel Turning With Unequal Pitch Angle Using Observer-Based Cutting Force Estimation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
044501
. 10.1115/1.4039111
45.
Xie
,
J.
,
Liu
,
F.
, and
Qiu
,
H.
,
2016
, “
An Integrated Model for Predicting the Specific Energy Consumption of Manufacturing Processes
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5–8
), pp.
1339
1346
. 10.1007/s00170-015-8033-y
46.
Nie
,
Z.
,
Wang
,
G.
,
Liu
,
D.
, and
Rong
,
Y.
,
2018
, “
A Statistical Model of Equivalent Grinding Heat Source Based on Random Distributed Grains
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051016
. 10.1115/1.4038729
47.
Buckwar
,
E.
,
Kuske
,
R.
,
L'Esperance
,
B.
, and
Soo
,
T.
,
2006
, “
Noise-Sensitivity in Machine Tool Vibrations
,”
Int. J. Bifurcat. Chaos.
,
16
(
8
), pp.
2407
2416
. 10.1142/S021812740601615X
You do not currently have access to this content.