Additive manufacturing (AM) has had an enormous impact on the manufacturing sector. Its role has evolved from printing prototypes to manufacturing functional parts for a variety of applications in the automotive, aerospace, and medical industries. Recently, AM processes have also been applied in the infrastructure construction industry. Applications of AM processes could bring in significant improvements in infrastructure construction, specifically in the areas of productivity and safety. It is desirable to have a review on the current state of emerging AM processes for infrastructure construction and existing gaps in this field. This paper reviews the AM processes in infrastructure construction. It discusses the process principle, application examples, and gaps for each of the AM processes.

References

1.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
,
1
, pp.
64
76
.
2.
Berman
,
B.
,
2012
, “
3-D Printing: The New Industrial Revolution
,”
Bus. Horiz.
,
55
(
2
), pp.
155
162
.
3.
Oak Ridge National Laboratory
,
2018
,
3D Printed Shelby Cobra
.
OAK Ridge National Laboratory
, https://web.ornl.gov/sci/manufacturing/shelby/, Accessed July, 3, 2018.
4.
Espalin
,
D.
,
Muse
,
D. W.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing Multifunctionality: Structures With Electronics
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
963
978
.
5.
Macdonald
,
E.
,
Salas
,
R.
,
Espalin
,
D.
,
Perez
,
M.
,
Aguilera
,
E.
,
Muse
,
D.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing for the Rapid Prototyping of Structural Electronics
,”
IEEE Access.
,
2
, pp.
234
242
.
6.
Parthasarathy
,
J.
,
Starly
,
B.
, and
Raman
,
S.
,
2011
, “
A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications
,”
J. Manuf. Process.
,
13
(
2
), pp.
160
170
.
7.
Heinl
,
P.
,
Müller
,
L.
,
Körner
,
C.
,
Singer
,
R. F.
, and
Müller
,
F. A.
,
2008
, “
Cellular Ti–6Al–4V Structures With Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting
,”
Acta Biomater.
,
4
(
5
), pp.
1536
1544
.
8.
Caffrey
,
T.
,
Wohlers
,
T.
, and
Campbell
,
R. I.
,
2016
, “
Wohlers Report 2016
,”
Wohlers Associates, Inc.
,
Fort Collins, CO
.
9.
Construction Intelligence Center
,
2015
, “
Global Construction Outlook 2020
.”
10.
International Labour Organization
,
2005
, “
Facts on Safety at Work
,” International Labour Official Technical Report.
11.
NIST
,
2011
, “
Metrics and Tools for Construction Productivity Project
,” https://www.nist.gov/programs-projects/metrics-and-tools-construction-productivity-project, Accessed December 3, 2018.
12.
Nasir
,
H.
,
Ahmed
,
H.
,
Haas
,
C.
, and
Goodrum
,
P. M.
,
2014
, “
An Analysis of Construction Productivity Differences Between Canada and the United States
,”
Constr. Manag. Econ.
,
32
(
6
), pp.
595
607
.
13.
Bureau of Labor Statistics
,
2017
, “
2016 U.S. Employment by Major Industry Sector
,” https://www.bls.gov/emp/ep_table_201.htm, Accessed Deceember 18, 2017.
14.
Bureau of Economic Analysis
,
2016
, “
Gross Domestic Product by Industry: First Quarter 2016
,” https://www.bea.gov/newsreleases/industry/gdpindustry/2016/gdpind116.htm, Accessed December 18, 2017.
15.
Economic Development Research Group Inc.
,
2016
,
Failure to Act: Closing the Infrastructure Investment Gap for America’s Economic Future
,
American Society of Civil Engineers
,
Reston, VA
.
16.
National Academy of Engineering (NAE)
,
2008
, “
NAE Grand Challenges for Engineering
,” http://engineeringchallenges.org/9136.aspx, Accessed April 20, 2018.
17.
Lab
,
R.
,
2007
, “
Think Formwork—Reduce Costs
,”
Struct. Magazine
, pp.
14
16
.
18.
Wangler
,
T.
,
Lloret
,
E.
,
Reiter
,
L.
,
Hack
,
N.
,
Gramazio
,
F.
, and
Kohler
,
M.
,
2016
, “
Digital Concrete: Opportunities and Challenges
,”
RILEM Technical Letters
,
1
, pp.
67
75
. http://letters.rilem.net/index.php/rilem/article/view/16
19.
Bukkapatnam
,
S.
,
Mander
,
J.
,
Paal
,
S.
,
Pei
,
Z.
, and
Zeng
,
L.
,
2017
, “
Workshop Report—NSF Workshop on Additive Manufacturing (3D Printing) for Civil Infrastructure Design and Construction
,”
National Science Foundation (NSF)
,
Alexandria, VA
.
20.
University of Stuttgart
,
2018
, “
New Cluster of Excellence: Integrative Computational Design and Construction for Architecture
,”
Dtsch. Forschungsgemeinschaft
, http://icd.uni-stuttgart.de/?p=24111, Accessed November 2018.
21.
Swiss National Science Foundation
,
2014
, “
National Center for Competence in Research-Digital Fabrication
,” http://www.snf.ch/en/researchinFocus/nccr/digital-fabrication/Pages/default.aspx, Accessed November 2018.
22.
The Future of Construction
,
2016
,
WinSun
. https://futureofconstruction.org/case/winsun/, Accessed July, 2018.
23.
Perkins
,
I.
, and
Skitmore
,
M.
,
2015
, “
Three-Dimensional Printing in the Construction Industry: A Review
,”
Int. J. Constr. Manag.
,
15
(
1
), pp.
1
9
.
24.
Bos
,
F.
,
Wolfs
,
R.
,
Ahmed
,
Z.
, and
Salet
,
T.
,
2016
, “
Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing
,”
Virtual Phys. Prototyp.
,
11
(
3
), pp.
209
225
.
25.
Tay
,
Y. W. D.
,
Panda
,
B.
,
Paul
,
S. C.
,
Noor Mohamed
,
N. A.
,
Tan
,
M. J.
, and
Leong
,
K. F.
,
2017
, “
3D Printing Trends in Building and Construction Industry: A Review
,”
Virtual Phys. Prototyp.
,
12
(
3
), pp.
261
276
.
26.
Wu
,
P.
,
Wang
,
J.
, and
Wang
,
X.
,
2016
, “
A Critical Review of the Use of 3-D Printing in the Construction Industry
,”
Autom. Constr.
,
68
, pp.
21
31
.
27.
Labonnote
,
N.
,
Rønnquist
,
A.
,
Manum
,
B.
, and
Rüther
,
P.
,
2016
, “
Additive Construction: State-of-the-Art, Challenges and Opportunities
,”
Autom. Constr.
,
72
, pp.
347
366
.
28.
Lowke
,
D.
,
Dini
,
E.
,
Perrot
,
A.
,
Weger
,
D.
,
Gehlen
,
C.
, and
Dillenburger
,
B.
,
2018
, “
Cement and Concrete Research Particle-Bed 3D Printing in Concrete Construction—Possibilities and Challenges
,”
Cem. Concr. Res.
,
112
, pp.
50
65
.
29.
ASTM International
,
2015
, “
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,”
ASTM International
, ISO/ASTM52900-15.
30.
Khoshnevis
,
B.
, and
Dutton
,
R.
,
1998
, “
Innovative Rapid Prototyping Process Makes Large Sized, Smooth Surfaced Complex Shapes in a Wide Variety of Materials
,”
Mater. Technol.
,
13
(
2
), pp.
53
56
.
31.
Zareiyan
,
B.
, and
Khoshnevis
,
B.
,
2017
, “
Interlayer Adhesion and Strength of Structures in Contour Crafting—Effects of Aggregate Size, Extrusion Rate, and Layer Thickness
,”
Autom. Constr.
,
81
, pp.
112
121
.
32.
Hwang
,
D.
, and
Khoshnevis
,
B.
,
2005
, “
An Innovative Construction Process-Contour Crafting
,”
22nd International Symposium on Automation and Robotics in Construction
,
Ferrara, Italy
,
Sept. 11–14
.
33.
ASTM International
,
2016
, “
Standard Specification for Mortar Cement BT—Standard Specification for Mortar Cement
,”
ASTM International
34.
Hwang
,
D.
, and
Khoshnevis
,
B.
,
2004
, “
Concrete Wall Fabrication by Contour Crafting
,”
21st International Symposium on Automation and Robotics in Construction.
,
Jeju, Republic of Korea
,
Sept. 21–25
, pp.
301
307
.
35.
Lim
,
S.
,
Buswell
,
R. A.
,
Le
,
T. T.
,
Austin
,
S. A.
,
Gibb
,
A. G. F.
, and
Thorpe
,
T.
,
2012
, “
Developments in Construction-Scale Additive Manufacturing Processes
,”
Autom. Constr.
,
21
(
1
), pp.
262
268
.
36.
Kwon
,
H.
,
Bukkapatnam
,
S.
,
Khoshnevis
,
B.
, and
Saito
,
J.
,
2002
, “
Effects of Orifice Shape in Contour Crafting of Ceramic Materials
,”
Rapid Prototyp. J.
,
8
(
3
), pp.
147
160
.
37.
Khoshnevis
,
B.
,
Yuan
,
X.
,
Zahiri
,
B.
,
Zhang
,
J.
, and
Xia
,
B.
,
2016
, “
Construction by Contour Crafting Using Sulfur Concrete With Planetary Applications
,”
Rapid Prototyp. J.
,
22
(
5
), pp.
848
856
.
38.
Bukkapatnam
,
S.
, and
Clark
,
B.
,
2007
, “
Dynamic Modeling and Monitoring of Contour Crafting—An Extrusion-Based Layered Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), p.
135
.
39.
Di Carlo
,
T.
,
2012
, “
Experimental and Numerical Techniques to Characterize Structural Properties of Fresh Concrete Relevant to Contour Crafting
,” Dissertation,
University of Southern California
,
Los Angeles, CA
.
40.
Bukkapatnam
,
S.
,
Khoshnevis
,
B.
,
Kwon
,
H.
, and
Saito
,
J.
,
2001
, “
Experimental Investigation of Contour Crafting Using Ceramics Materials
,”
Rapid Prototyp. J.
,
7
(
1
), pp.
32
42
.
41.
ASTM International
,
2018
, “
Standard Terminology Relating to Concrete and Concrete Aggregates 1
,”
ASTM International
, pp.
1
8
.
42.
Kazemian
,
A.
,
Yuan
,
X.
,
Cochran
,
E.
, and
Khoshnevis
,
B.
,
2017
, “
Cementitious Materials for Construction-Scale 3D Printing: Laboratory Testing of Fresh Printing Mixture
,”
Constr. Build. Mater.
,
145
, pp.
639
647
.
43.
Khoshnevis
,
B.
,
2004
, “
Automated Construction by Contour Crafting—Related Robotics and Information Technologies
,”
Autom. Constr.
,
13
(
1
), pp.
5
19
.
44.
Kwon
,
H.
,
2002
, “Experimentation and Analysis of Contour Crafting (CC) Process Using Uncured Ceramic Materials,”
Dissertation
,
University of Southern California
,
Los Angeles, CA
.
45.
Zhang
,
J.
, and
Khoshnevis
,
B.
,
2013
, “
Optimal Machine Operation Planning for Construction by Contour Crafting
,”
Autom. Constr.
,
29
, pp.
50
67
.
46.
Zhang
,
J.
, and
Khoshnevis
,
B.
,
2010
, “
Contour Crafting Process Plan Optimization Part I: Single-Nozzle Case
,”
J. Ind. Syst. Eng.
,
4
(
1
), pp.
33
46
.
47.
Zhang
,
J.
,
2009
,
Contour Crafting Process Planning and Optimization, Dissertation
,
University of Southern California
,
Los Angeles, CA
.
48.
Yeh
,
Z.
, and
Khoshnevis
,
B.
,
2009
, “
Geometric Conformity Analysis for Automated Fabrication Processes Generating Ruled Surfaces: Demonstration for Contour Crafting
,”
Rapid Prototyp. J.
,
15
(
5
), pp.
361
369
.
49.
Zareiyan
,
B.
, and
Khoshnevis
,
B.
,
2017
, “
Effects of Interlocking on Interlayer Adhesion and Strength of Structures in 3D Printing of Concrete
,”
Autom. Constr.
,
83
, pp.
212
221
.
50.
Bosscher
,
P.
,
Williams
,
R. L.
,
Bryson
,
L. S.
, and
Castro-Lacouture
,
D.
,
2007
, “
Cable-Suspended Robotic Contour Crafting System
,”
Autom. Constr.
,
17
(
1
), pp.
45
55
.
51.
Williams
,
R. L.
, II
,
Xin
,
M.
, and
Bosscher
,
P.
,
2008
, “
Contour-Crafting-Cartesian-Cable Robot System Concepts: Workspace and Stiffness Comparisons (DETC2008-49478)
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
, pp.
31
38
.
52.
Good
,
J.
,
Gilley
,
S.
,
McLemore
,
C.
,
Fikes
,
J.
, and
Darby
,
C.
,
2008
, “
Fabrication Capabilities Utilizing In Situ Materials
,”
AIAA SPACE 2008 Conference & Exposition
,
San Diego, CA
,
Sept. 9–11
, p.
7854
.
53.
Khoshnevis
,
B.
,
Bodiford
,
M. P.
,
Burks
,
K. H.
,
Ethridge
,
E.
,
Tucker
,
D.
,
Kim
,
W.
,
Toutanji
,
H.
, and
Fiske
,
M. R.
,
2005
, “
Lunar Contour Crafting—A Novel Technique for ISRU-Based Habitat Development
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, p.
538
.
54.
Khoshnevis
,
B.
,
Carlson
,
A.
,
Leach
,
N.
, and
Thangavelu
,
M.
,
2012
, “
Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Buildup
,”
Earth Sp.
,
2012
, pp.
1458
1467
.
55.
Leach
,
N.
,
Carlson
,
A.
,
Khoshnevis
,
B.
, and
Thangavelu
,
M.
,
2012
, “
Robotic Construction by Contour Crafting: The Case of Lunar Construction
,”
Int. J. Archit. Comput.
,
10
(
3
), pp.
423
438
.
56.
Khoshnevis
,
B.
,
Thangavelu
,
M.
,
Yuan
,
X.
, and
Zhang
,
J.
,
2013
, “
Advances in Contour Crafting Technology for Extraterrestrial Settlement Infrastructure Buildup
,”
AIAA SPACE 2013 Conference and Exposition
,
San Diego, CA
,
Sept. 10–12
, p.
5438
.
57.
Thangavelu
,
M.
,
Khoshnevis
,
B.
,
Carlson
,
A.
, and
Leach
,
N.
,
2012
, “
Architectural Concepts Employing Co-Robot Strategy and Contour Crafting Technologies for Lunar Settlement Infrastructure Development
,”
AIAA Space Conference & Exposition
,
Pasadena, CA
,
Sept. 11–13
, p.
5173
.
58.
Khoshnevis
,
B.
,
2017
, “
Large Scale 3-D Printing: Past, Present and Future Project
,” https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day1/invited-talks-2/khoshnevis.pdf, Accessed October 10, 2017.
59.
Sanders
,
G. B.
, and
Larson
,
W. E.
,
2011
, “
Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs
,”
Adv. Sp. Res.
,
47
(
1
), pp.
20
29
.
60.
Mueller
,
R. P.
,
Howe
,
S.
,
Kochmann
,
D.
,
Ali
,
H.
,
Andersen
,
C.
,
Burgoyne
,
H.
,
Chambers
,
W.
,
Clinton
,
R.
,
De Kestellier
,
X.
,
Ebelt
,
K.
,
Gerner
,
S.
,
Hofmann
,
D.
,
Hogstrom
,
K.
,
Ilves
,
E.
, and
Jerves
,
A.
,
2016
, “
Automated Additive Construction (AAC) for Earth and Space Using In-Situ Resources
,”
Proc. Fifteenth Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction and Operations in Challenging Environments
,
Orlando, FL
,
Apr. 11–15
.
61.
Lim
,
S.
,
Buswell
,
R. A.
,
Le
,
T. T.
,
Wackrow
,
R.
,
Austin
,
S. A.
,
Gibb
,
A. G. F.
, and
Thorpe
,
T.
,
2011
, “
Development of a Viable Concrete Printing Process
,”
Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC2011)
,
Seoul, South Korea
,
June 29–July 2
, © International Association for Automation and Robotics in Construction (I.A.A.R.C.), pp.
665
670
.
62.
Le
,
T. T.
,
Austin
,
S. A.
,
Lim
,
S.
,
Buswell
,
R. A.
,
Gibb
,
A. G. F.
, and
Thorpe
,
T.
,
2012
, “
Mix Design and Fresh Properties for High-Performance Printing Concrete
,”
Mater. Struct.
,
45
(
8
), pp.
1221
1232
.
63.
Buswell
,
R. A.
,
De Silva
,
W. R. L.
,
Jones
,
S. Z.
, and
Dirrenberger
,
J.
,
2018
, “
Cement and Concrete Research 3D Printing Using Concrete Extrusion: A Roadmap for Research
,”
Cem. Concr. Res.
,
112
, pp.
37
49
.
64.
ASTM International
,
2018
, “
ASTM C125-18 Standard Terminology Relating to Concrete and Concrete Aggregates
,”
ASTM International
, pp.
1
4
.
65.
Rushing
,
T. S.
,
Al-Chaar
,
G.
,
Eick
,
B. A.
,
Burroughs
,
J.
,
Shannon
,
J.
,
Barna
,
L.
, and
Case
,
M.
,
2017
, “
Investigation of Concrete Mixtures for Additive Construction
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
74
80
.
66.
Malaeb
,
Z.
,
Hachem
,
H.
,
Tourbah
,
A.
,
Maalouf
,
T.
,
El Zarwi
,
N.
, and
Hamzeh
,
F.
,
2015
, “
3D Concrete Printing: Machine and Mix Design
,”
Int. J. Civ. Eng. Technol.
,
6
(
6
), pp.
14
22
.
67.
Hambach
,
M.
, and
Volkmer
,
D.
,
2017
, “
Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste
,”
Cem. Concr. Compos.
,
79
, pp.
62
70
.
68.
Panda
,
B.
,
Paul
,
S. C.
,
Mohamed
,
N. A. N.
,
Tay
,
Y. W. D.
, and
Tan
,
M. J.
,
2018
, “
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
,”
Meas. J. Int. Meas. Confed.
,
113
, pp.
108
116
.
69.
Panda
,
B.
,
Paul
,
S. C.
,
Hui
,
L. J.
,
Tay
,
Y. W. D.
, and
Tan
,
M. J.
,
2018
, “
Additive Manufacturing of Geopolymer for Sustainable Built Environment
,”
J. Clean. Prod.
,
167
, pp.
281
288
.
70.
Salet
,
T. A. M.
,
Bos
,
F. P.
,
Wolfs
,
R. J. M.
, and
Ahmed
,
Z. Y.
,
2017
, “
3D Concrete Printing—A Structural Engineering Perspective
,”
Proceedings of the 2017 Fib Symposium, High Tech Concrete: Where Technology and Engineering Meet
,
Maastricht, The Netherlands
,
June 12–14
, pp.
xliii
lvii
.
71.
Panda
,
B.
, and
Tan
,
M. J.
,
2018
, “
Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing
,”
Ceram. Int.
,
44
(
9
), pp.
10258
10265
.
72.
Paul
,
S. C.
,
Tay
,
Y. W. D.
,
Panda
,
B.
, and
Tan
,
M. J.
,
2018
, “
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
,”
Arch. Civ. Mech. Eng.
,
18
(
1
), pp.
311
319
.
73.
Feng
,
L.
, and
Yuhong
,
L.
,
2014
, “
Study on the Status Quo and Problems of 3D Printed Buildings in China
,”
Glob. J. Human-Social Sci. Res.
,
14
(
5
).
74.
Nerella
,
V. N.
,
Krause
,
M.
,
Näther
,
M.
, and
Mechtcherine
,
V.
,
2019
,
3D Concrete Printing Technology
,
Butterworth-Heinemann
, pp.
333
347
. Chapter 16.
75.
Gosselin
,
C.
,
Duballet
,
R.
,
Roux
,
P.
,
Gaudillière
,
N.
,
Dirrenberger
,
J.
, and
Morel
,
P.
,
2016
, “
Large-Scale 3D Printing of Ultra-High Performance Concrete—A New Processing Route for Architects and Builders
,”
Mater. Des.
,
100
, pp.
102
109
.
76.
World’s Advanced Saving Project-WASP
,
2018
, “
Delta WASP 2040
,” https://www.personalfab.it/en/shop/clay-3d-printer-delta-wasp-2040-clay/, Accessed July, 2018.
77.
Xu
,
J.
,
Ding
,
L.
, and
Love
,
P. E. D.
,
2017
, “
Digital Reproduction of Historical Building Ornamental Components: From 3D Scanning to 3D Printing
,”
Autom. Constr.
,
76
, pp.
85
96
.
78.
Perrot
,
A.
,
Rangeard
,
D.
, and
Pierre
,
A.
,
2016
, “
Structural Built-up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques
,”
Mater. Struct. Constr.
,
49
(
4
), pp.
1213
1220
.
79.
Suiker
,
A. S. J.
,
2018
, “
Mechanical Performance of Wall Structures in 3D Printing Processes: Theory, Design Tools and Experiments
,”
Int. J. Mech. Sci.
,
137
, pp.
145
170
.
80.
Wolfs
,
R. J. M.
,
Bos
,
F. P.
, and
Salet
,
T. A. M.
,
2018
, “
Early Age Mechanical Behaviour of 3D Printed Concrete: Numerical Modelling and Experimental Testing
,”
Cem. Concr. Res.
,
106
, pp.
103
116
.
81.
Roussel
,
N.
,
2018
, “
Rheological Requirements for Printable Concretes
,”
Cem. Concr. Res.
,
112
, pp.
76
85
.
82.
Reiter
,
L.
,
Wangler
,
T.
,
Roussel
,
N.
, and
Flatt
,
R. J.
,
2018
, “
The Role of Early Age Structural Build-Up in Digital Fabrication With Concrete
,”
Cem. Concr. Res.
,
112
, pp.
86
95
.
83.
Ramachandran
,
V. S.
, and
Beaudoin
,
J. J.
,
2000
,
Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications
,
Elsevier
,
New York
.
84.
Marchon
,
D.
,
Kawashima
,
S.
,
Bessaies-bey
,
H.
,
Mantellato
,
S.
, and
Ng
,
S.
,
2018
, “
Hydration and Rheology Control of Concrete for Digital Fabrication: Potential Admixtures and Cement Chemistry
,”
Cem. Concr. Res.
,
112
, pp.
96
110
.
85.
Wijffels
,
M. J. H.
,
Wolfs
,
R. J. M.
,
Suiker
,
A. S. J.
, and
Salet
,
T. A. M.
,
2017
, “
Magnetic Orientation of Steel Fibres in Self-Compacting Concrete Beams: Effect on Failure Behaviour
,”
Cem. Concr. Compos.
,
80
, pp.
342
355
.
86.
Bos
,
F. P.
,
Ahmed
,
Z. Y.
,
Jutinov
,
E. R.
, and
Salet
,
T. A. M.
,
2017
, “
Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete
,”
Materials (Basel)
,
10
(
11
), p.
1314
.
87.
Mechtcherine
,
V.
,
Grafe
,
J.
,
Nerella
,
V. N.
,
Spaniol
,
E.
,
Hertel
,
M.
, and
Füssel
,
U.
,
2018
, “
3D-Printed Steel Reinforcement for Digital Concrete Construction—Manufacture, Mechanical Properties and Bond Behaviour
,”
Constr. Build. Mater.
,
179
, pp.
125
137
.
88.
Asprone
,
D.
,
Menna
,
C.
,
Bos
,
F. P.
,
Salet
,
T. A. M.
, and
Mata-falcón
,
J.
,
2018
, “
Rethinking Reinforcement for Digital Fabrication With Concrete
,”
Cem. Concr. Res.
,
112
, pp.
111
121
.
89.
Asprone
,
D.
,
Auricchio
,
F.
,
Menna
,
C.
, and
Mercuri
,
V.
,
2018
, “
3D Printing of Reinforced Concrete Elements: Technology and Design Approach
,”
Constr. Build. Mater.
,
165
, pp.
218
231
.
90.
Mata-Falcón
,
J.
,
Bischof
,
P.
, and
Kaufmann
,
W.
,
2018
, “
Exploiting the Potential of Digital Fabrication for Sustainable and Economic Concrete Structures
,”
RILEM International Conference on Concrete and Digital Fabrication
,
Zurich, Switzerland
,
Sept. 10–12
, pp.
157
166
.
91.
Lloret
,
E.
,
Shahab
,
A. R.
,
Linus
,
M.
,
Flatt
,
R. J.
,
Gramazio
,
F.
,
Kohler
,
M.
, and
Langenberg
,
S.
,
2015
, “
Complex Concrete Structures: Merging Existing Casting Techniques With Digital Fabrication
,”
CAD Comput. Aided Des.
,
60
, pp.
40
49
.
92.
Lloret Fritschi
,
E.
,
Reiter
,
L.
,
Wangler
,
T.
,
Gramazio
,
F.
,
Kohler
,
M.
, and
Flatt
,
R. J.
,
2017
, “
Smart Dynamic Casting Slipforming With Flexible Formwork—Inline Measurement and Control
,”
HPC/CIC Tromsø 2017
,
Tromsø, Norway
,
Mar. 6–8
.
93.
Szabo
,
A.
,
Reiter
,
L.
,
Lloret-Fritschi
,
E.
,
Gramazio
,
F.
,
Kohler
,
M.
, and
Flatt
,
R. J.
,
2018
, “
Adapting Smart Dynamic Casting to Thin Folded Geometries
,”
RILEM International Conference on Concrete and Digital Fabrication
,
Zurich, Switzerland
,
Sept. 10–12
, pp.
81
93
.
94.
Lloret-Fritschi
,
E.
,
Scotto
,
F.
,
Gramazio
,
F.
,
Kohler
,
M.
,
Graser
,
K.
,
Wangler
,
T.
,
Reiter
,
L.
,
Flatt
,
R. J.
, and
Mata-Falcón
,
J.
,
2018
, “
Challenges of Real-Scale Production With Smart Dynamic Casting
,”
RILEM International Conference on Concrete and Digital Fabrication
,
Zurich, Switzerland
,
Sept. 10–12
, pp.
299
310
.
95.
Zavattieri
,
P. D.
,
2017
, “
Material Architecture Inspired by Nature: Harnessing the Role of Interfaces and Uncovering Hidden Possibilities
,” https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day1/invited-talks-2/zavattieri.pdf, Accessed October 10, 2017.
96.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Des.
,
69
, pp.
65
89
.
97.
Moini
,
M.
,
Olek
,
J.
,
Magee
,
B.
,
Zavattieri
,
P.
, and
Youngblood
,
J.
,
2019
, “
Additive Manufacturing and Characterization of Architectured Cement-Based Materials via X-Ray Micro-Computed Tomography
,”
RILEM Bookseries
,
19
, pp.
176
189
.
98.
Moini
,
M.
,
Olek
,
J.
,
Youngblood
,
J. P.
,
Magee
,
B.
, and
Zavattieri
,
P. D.
,
2018
, “
Additive Manufacturing and Performance of Architectured Cement-Based Materials
,”
Adv. Mater.
,
30
(
43
), pp.
1
11
.
99.
Habert
,
G.
,
2013
, “
Environmental Impact of Portland Cement Production
,”
Eco-efficient Concrete
,
F.
Pacheco-Torgal
,
S.
Jalali
,
J.
Labrincha
, and
V. M.
John
, eds.,
Woodhead Publ.
,
Cambridge
, pp.
3
25
.
100.
Salet
,
T.
(Theo),
2017
, “
3D Concrete Printing—A Journey With Destination Unknown
,” https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day1/invited-talks-3/salet.pdf, Accessed October 10, 2017.
101.
Wangler
,
T.
,
2017
, “
Materials Challenges in Digital Fabrication With Concrete
,” https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day2/invited-talks-1/wangler.pdf, Accessed October 11, 2017.
102.
De Schutter
,
G.
,
Lesage
,
K.
,
Mechtcherine
,
V.
,
Naidu
,
V.
,
Habert
,
G.
, and
Agusti-juan
,
I.
,
2018
, “
Vision of 3D Printing With Concrete—Technical, Economic and Environmental Potentials
,”
Cem. Concr. Res.
,
112
, pp.
25
36
.
103.
Jones
,
S. Z.
,
2017
, “
NIST Perspectives on Additive Manufacturing for Civil Infrastructure Design and Construction
,” https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day2/invited-talks-2/jones.pdf, Accessed October 11, 2017.
104.
Sanchez
,
F.
,
Biernacki
,
J. J.
,
Olek
,
J.
, and
Zavattieri
,
P. D.
,
2017
, “
3D Printing: A New Promising Avenue for Concrete and the Construction Industry
,”
NSF Workshop on Additive Manufacturing for Civil Infrastructure Design and Construction
,
Arlington, VA
,
July 13–14
. https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day1/invitedtalks-3/sanchez.pdf
105.
Biernacki
,
J. J.
,
Bullard
,
J. W.
,
Sant
,
G.
,
Brown
,
K.
,
Glasser
,
F. P.
,
Jones
,
S.
,
Ley
,
T.
,
Livingston
,
R.
,
Nicoleau
,
L.
,
Olek
,
J.
,
Sanchez
,
F.
,
Shahsavari
,
R.
,
Stutzman
,
P. E.
,
Sobolev
,
K.
, and
Prater
,
T.
,
2017
, “
Cements in the 21 St Century: Challenges, Perspectives, and Opportunities
,”
J. Am. Ceram. Soc.
,
100
(
7
), pp.
1
28
.
106.
Keating
,
S. J.
,
Leland
,
J. C.
,
Cai
,
L.
, and
Oxman
,
N.
,
2017
, “
Toward Site-Specific and Self-Sufficient Robotic Fabrication on Architectural Scales
,”
Sci. Robot.
,
2
(
5
), p.
eaam8986
.
107.
Reuters
,
2018
, “
3D-Printed Public Housing Unveiled in France
,” https://www.reuters.com/article/us-france-robot-printer-house/3d-printed-public-housing-unveiled-in-france-idUSKBN1HH2HW, Accessed September, 2018.
108.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
2013
,
Functionally Graded Materials: Design, Processing and Applications Volume 5 of Materials Technology Series
,
Springer Science & Business Media
,
New York
.
109.
Duro-Royo
,
J.
,
Mogas-Soldevila
,
L.
, and
Oxman
,
N.
,
2015
, “
Flow-Based Fabrication: An Integrated Computational Workflow for Design and Digital Additive Manufacturing of Multifunctional Heterogeneously Structured Objects
,”
CAD Comput. Aided Des.
,
69
, pp.
143
154
.
110.
Mogas-Soldevila
,
L.
,
Duro-Royo
,
J.
, and
Oxman
,
N.
,
2014
, “
Water-Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion
,”
3D Print. Addit. Manuf.
,
1
(
3
), pp.
141
151
.
111.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
181
189
.
112.
Oak Ridge National Laboratory
,
2016
, “
ORNL/Boeing Guinness World Record
,” https://www.ornl.gov/news/3d-printed-tool-building-aircraft-achieves-guinness-world-records-title, Accessed November, 2017.
113.
Biswas
,
K.
,
Rose
,
J.
,
Eikevik
,
L.
,
Guerguis
,
M.
,
Enquist
,
P.
,
Lee
,
B.
,
Love
,
L.
,
Green
,
J.
, and
Jackson
,
R.
,
2016
, “
Additive Manufacturing Integrated Energy—Enabling Innovative Solutions for Buildings of the Future
,”
ASME J. Sol. Energy Eng.
,
139
(
1
), p.
015001
.
114.
Love
,
L. J.
,
Kunc
,
V.
,
Rios
,
O.
,
Duty
,
C. E.
,
Elliott
,
A. M.
,
Post
,
B. K.
,
Smith
,
R. J.
, and
Blue
,
C. A.
,
2014
, “
The Importance of Carbon Fiber to Polymer Additive Manufacturing
,”
J. Mater. Res.
,
29
(
17
), pp.
1893
1898
.
115.
Post
,
B. K.
,
2017
, “
Breaking Barriers With BAAM: Large Scale Additive Manufacturing Applications in Infrastructure
,” https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day1/invited-talks-2/post.pdf, Accessed October 10, 2017.
116.
Giftthaler
,
M.
,
Sandy
,
T.
,
Dörfler
,
K.
,
Brooks
,
I.
,
Buckingham
,
M.
,
Rey
,
G.
,
Kohler
,
M.
,
Gramazio
,
F.
, and
Buchli
,
J.
,
2017
, “
Mobile Robotic Fabrication at 1:1 Scale: The In Situ Fabricator
,”
Constr. Robot.
,
1
(
1–4
), pp.
1
11
.
117.
Hack
,
N.
, and
Lauer
,
W. V.
,
2014
, “
Mesh-Mould: Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork
,”
Archit. Des.
,
84
(
3
), pp.
44
53
.
118.
Hack
,
N.
,
Lauer
,
W. V.
,
Gramazio
,
F.
, and
Kohler
,
M.
,
2015
, “
Mesh Mould: Robotically Fabricated Metal Meshes as Concrete Formwork and Reinforcement
,”
Proceedings of 11th International Symposium on Ferrocement and 3rd ICTRC International Conference on Textile Reinforced Concrete
,
Aachen, Germany
,
June 7–10
, pp.
347
359
.
119.
Dini
,
E.
,
2009
, “
D-SHAPE—The 21st Century Revolution in Building Technology Has a Name
,” pp.
1
16
. https://www.cadblog.pl/podcasty/luty_2012/d_shape_presentation.pdf
120.
Cesaretti
,
G.
,
Dini
,
E.
,
De Kestelier
,
X.
,
Colla
,
V.
, and
Pambaguian
,
L.
,
2014
, “
Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
,”
Acta Astronaut.
,
93
, pp.
430
450
.
121.
Feng
,
P.
,
Meng
,
X.
,
Chen
,
J.-F.
, and
Ye
,
L.
,
2015
, “
Mechanical Properties of Structures 3D Printed With Cementitious Powders
,”
Constr. Build. Mater.
,
93
, pp.
486
497
.
122.
Xia
,
M.
, and
Sanjayan
,
J.
,
2016
, “
Method of Formulating Geopolymer for 3D Printing for Construction Applications
,”
Mater. Des.
,
110
, pp.
382
390
.
123.
Shakor
,
P.
,
Sanjayan
,
J.
,
Nazari
,
A.
, and
Nejadi
,
S.
,
2017
, “
Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
,”
Constr. Build. Mater.
,
138
, pp.
398
409
.
124.
Weger
,
D.
,
Lowke
,
D.
, and
Gehlen
,
C.
,
2016
, “
3D printing of concrete structures using the selective binding method–Effect of concrete technology on contour precision and compressive strength
,”
Proceedings of 11th Fib International PhD Symposium in Civil Engineering
,
Tokyo, Japan
,
Aug. 29–31
, pp.
403
410
.
125.
Weger
,
D.
,
Lowke
,
D.
,
Gehlen
,
C.
, and
Talke
,
D.
,
2018
, “
Additive Manufacturing of Concrete Elements Using Selective Cement Paste Intrusion-Effect of Layer Orientation on Strength and Durability
,”
Proceedings of RILEM 1st International Conference on Concrete and Digital Fabrication
,
Zurich, Switzerland
,
Sept. 10–12
.
126.
Zhang
,
J.
, and
Khoshnevis
,
B.
,
2015
, “
Selective Separation Sintering (SSS): A New Layer Based Additive Manufacturing Approach for Metals and Ceramics
,”
Proceedings of Solid Freedom Fabrication
, pp.
71
79
.
127.
Khoshnevis
,
B.
, and
Zhang
,
J.
,
2015
, “
Selective Separation Sintering (SSS)—An Additive Manufacturing Approach for Fabrication of Ceramic and Metallic Parts With Application in Planetary Construction
,”
AIAA SPACE 2015 Conference and Exposition
,
Pasadena, CA
,
Aug. 31–Sept. 2
.
128.
Agustí-Juan
,
I.
, and
Habert
,
G.
,
2017
, “
Environmental Design Guidelines for Digital Fabrication
,”
J. Clean. Prod.
,
142
, pp.
2780
2791
.
129.
Cerovsek
,
T.
,
2011
, “
A Review and Outlook for a “Building Information Model” (BIM): A Multi-Standpoint Framework for Technological Development
,”
Adv. Eng. Informatics
,
25
(
2
), pp.
224
244
.
130.
Duballet
,
R.
,
Baverel
,
O.
, and
Dirrenberger
,
J.
,
2017
, “
Classification of Building Systems for Concrete 3D Printing
,”
Autom. Constr.
,
83
, pp.
247
258
.
131.
Goodings
,
D. J.
,
2017
, “
NSF Perspectives on Additive Manufacturing for Civil Infrastructure Design and Construction
,” https://static.tti.tamu.edu/conferences/tamu-engineering/nsf-3dp-workshop/day2/invited-talks-2/goodings.pdf, Accessed October 11, 2017.
132.
Kalil
,
T.
, and
Wadia
,
C.
,
2011
,
Materials Genome Initiative: A Renaissance of American Manufacturing
. https://obamawhitehouse.archives.gov/blog/2011/06/24/materials-genome-initiative-renaissance-american-manufacturing
You do not currently have access to this content.