Automatic sensing devices and computer systems have been widely adopted by the automotive manufacturing industry, which are capable to record machine status and process parameters nonstop. While a manufacturing process always has natural variations, it is crucial to detect significant changes to the process for quality control, as such changes may be the early signs of machine faults. This motivates our study on change-point detection methods for automotive manufacturing. We aim at developing a systematic approach for detecting process changes retrospectively in complex, nonstationary data. The proposed approach consists of nonparametric change-point detection, alarm generation based on change-point estimations, and performance evaluation against historical maintenance records. For change-point detection, three nonparametric methods are suggested—least absolute shrinkage and selection operator (LASSO), thresholded LASSO, and wild binary segmentation (WBS). Multiple decision rules are proposed to determine how to generate alarms from change-point estimations. Numerical studies are conducted to demonstrate the performance of the proposed systematic approach. The different change-point detection methods and different decision rules are evaluated and compared, with scenarios for choosing one set of change-point detection method and decision rule over another combination identified. It is shown that LASSO and thresholded-LASSO outperform WBS when the shift size is small, but WBS produces a smaller false alarm rate and handles the clustering of changes better than LASSO or thresholded LASSO. Data from an automotive manufacturing plant are used in the case study to demonstrate the proposed approach. Guidelines for implementation are also provided.

References

1.
Lowery
,
N. L.
,
Vahdati
,
M. M.
,
Potthast
,
R. W.
, and
Holderbaum
,
W.
,
2013
, “
Classification and Fault Detection Methods for Fuel Cell Monitoring and Quality Control
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
2
), p.
021002
.
2.
Magarian
,
J. N.
,
White
,
R. D.
, and
Matson
,
D. M.
,
2016
, “
Real-Time Acoustic and Pressure Characterization of Two-Phase Flow for Quality Control of Expanded Polystyrene Injection Molding Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051002
.
3.
Abell
,
J. A.
,
Chakraborty
,
D.
,
Escobar
,
C. A.
,
Im
,
K. H.
,
Wegner
,
D. M.
, and
Wincek
,
M. A.
,
2017
, “
Big Data-Driven Manufacturing—Process-Monitoring-for-Quality Philosophy
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101009
.
4.
Wang
,
P.
,
Fan
,
Z.
,
Kazmer
,
D. O.
, and
Gao
,
R. X.
,
2017
, “
Orthogonal Analysis of Multisensor Data Fusion for Improved Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101008
.
5.
Lu
,
G.
,
Zhou
,
Y.
,
Lu
,
C.
, and
Li
,
X.
,
2017
, “
A Novel Framework of Change-Point Detection for Machine Monitoring
,”
Mech. Syst. Signal Proc.
,
83
, pp.
533
548
.
6.
Aminikhanghahi
,
S.
, and
Cook
,
D. J.
,
2017
, “
A Survey of Methods for Time Series Change Point Detection
,”
Knowl. Inf. Syst.
,
51
(
2
), pp.
339
367
.
7.
Ho
,
L. L.
, and
Aparisi
,
F.
,
2016
, “
ATTRIVAR: Optimized Control Charts to Monitor Process Mean With Lower Operational Cost
,”
Int. J. Prod. Econ.
,
182
, pp.
472
483
.
8.
Gunay
,
E.
, and
Kula
,
U.
,
2016
, “
Integration of Production Quantity and Control Chart Design in Automotive Manufacturing
,”
Comput. Ind. Eng.
,
102
, pp.
374
382
.
9.
Čampulová
,
M.
,
Veselik
,
P.
, and
Michalek
,
J.
,
2017
, “
Control Chart and Six Sigma Based Algorithms for Identification of Outliers in Experimental Data, W an Application to Particulate Matter PM10
,”
Atmos. Pollut. Res.
,
8
(
4
), pp.
700
708
.
10.
Lin
,
Y.-C.
,
Chou
,
C.-Y.
, and
Chen
,
C.-H.
,
2017
, “
Robustness of the EWMA Median Control Chart to Non-Normality
,”
Int. J. Ind. Syst. Eng.
,
25
(
1
), pp.
35
58
.
11.
Hawkins
,
D. M.
,
Qiu
,
P.
, and
Kang
,
C. W.
,
2003
, “
The Changepoint Model for Statistical Process Control
,”
J. Qual. Technol.
,
35
(
4
), pp.
355
366
.
12.
Chang
,
S. T.
, and
Lu
,
K. P.
,
2016
, “
Change-Point Detection for Shifts in Control Charts Using EM Change-Point Algorithms
,”
Qual. Reliab. Eng. Int.
,
32
(
3
), pp.
889
900
.
13.
Sullivan
,
J. H.
,
2002
, “
Detection of Multiple Change Points From Clustering Individual Observations
,”
J. Qual. Technol.
,
34
(
4
), pp.
371
383
.
14.
Perry
,
M. B.
,
Pignatiello
,
J. J.
, and
Simpson
,
J. R.
,
2006
, “
Estimating the Change Point of a Poisson Rate Parameter With a Linear Trend Disturbance
,”
Qual. Reliab. Eng. Int.
,
22
(
4
), pp.
371
384
.
15.
Perry
,
M. B.
,
Pignatiello
,
J. J.
, and
Simpson
,
J. R.
,
2007
, “
Estimating the Change Point of the Process Fraction Non-Conforming With a Monotonic Change Disturbance in spc
,”
Qual. Reliab. Eng. Int.
,
23
(
3
), pp.
327
339
.
16.
Noorossana
,
R.
, and
Shadman
,
A.
,
2009
, “
Estimating the Change Point of a Normal Process Mean With a Monotonic Change
,”
Qual. Reliab. Eng. Int.
,
25
(
1
), pp.
79
90
.
17.
Ayoubi
,
M.
,
Kazemzadeh
,
R. B.
, and
Noorossana
,
R.
,
2016
, “
Change Point Estimation in the Mean of Multivariate Linear Profiles With No Change Type Assumption via Dynamic Linear Model
,”
Qual. Reliab. Eng. Int.
,
32
(
2
), pp.
403
433
.
18.
Tercero-Gómez
,
V. G.
,
Carmen Temblador-Pérez
,
M.
,
Beruvides
,
M.
, and
Hernández-Luna
,
A.
,
2013
, “
Nonparametric Estimator for the Time of a Step Change in the Trend of Random Walk Models With Drift
,”
Qual. Reliab. Eng. Int.
,
29
(
1
), pp.
43
51
.
19.
Ning
,
W.
,
Yeh
,
A. B.
,
Wu
,
X.
, and
Wang
,
B.
,
2015
, “
A Nonparametric Phase I Control Chart for Individual Observations Based on Empirical Likelihood Ratio
,”
Qual. Reliab. Eng. Int.
,
31
(
1
), pp.
37
55
.
20.
Harchaoui
,
Z.
, and
Lévy-Leduc
,
C.
,
2010
, “
Multiple Change-Point Estimation With a Total Variation Penalty
,”
J. Am. Stat. Assoc.
,
105
(
492
), pp.
1480
1493
.
21.
Choe
,
Y.
,
Guo
,
W.
,
Byon
,
E.
,
Jin
,
J. J.
, and
Li
,
J.
,
2016
, “
Change-Point Detection on Solar Panel Performance Using Thresholded LASSO
,”
Qual. Reliab. Eng. Int.
,
32
(
8
), pp.
2653
2665
.
22.
Levy-leduc
,
C.
, and
Harchaoui
,
Z.
,
2008
, “
Catching Change-Points With Lasso
,”
Advances in Neural Information Processing Systems
, Vol.
20
,
the Neural Information Processing Systems Conference (NIPS 2007)
,
Vancouver, BC, Canada
, pp.
617
624
.
23.
Zhou
,
S.
,
2009
, “
Thresholding Procedures for High Dimensional Variable Selection and Statistical Estimation
,”
Advances in Neural Information Processing Systems
, Vol.
22
,
the Neural Information Processing Systems Conference (NIPS 2009)
,
Vancouver, BC, Canada
.
24.
Fryzlewicz
,
P.
,
2014
, “
Wild Binary Segmentation for Multiple Change-Point Detection
,”
Ann. Stat.
,
42
(
6
), pp.
2243
2281
.
25.
Zhou
,
M.
,
Zhou
,
Q.
, and
Geng
,
W.
,
2016
, “
A New Nonparametric Control Chart for Monitoring Variability
,”
Qual. Reliab. Eng. Int.
,
32
(
7
), pp.
2471
2479
.
26.
Wang
,
S.
,
Ji
,
B.
,
Zhao
,
J.
,
Liu
,
W.
, and
Xu
,
T.
,
2017
,
Predicting Ship Fuel Consumption Based on LASSO Regression
,
65
(
December 2018
), pp.
817
824
.
27.
Zhang
,
Y.
,
Minchin Jr
,
R. E.
, and
Agdas
,
D.
,
2017
, “
Forecasting Completed Cost of Highway Construction Projects Using LASSO Regularized Regression
,”
J. Constr. Eng. Manage.
,
143
(
10
), p.
04017071
.
28.
Ni
,
P.
,
Mangalathu
,
S.
, and
Liu
,
K.
,
2018
, “
Enhanced Fragility Analysis of Buried Pipelines Through Lasso Regression
,”
Acta Geotechnica
. (in press).
29.
Choe
,
Y.
,
Guo
,
W.
,
Byon
,
E.
,
Jin
,
J.
, and
Li
,
J.
,
2016
, “
Change-Point Detection on Solar Panel Performance Using Thresholded LASSO
,”
Qual. Reliab. Eng. Int.
,
32
(
8
), pp.
2653
2665
.
30.
Trigano
,
T.
, and
Cohen
,
J.
,
2017
, “
Intensity Estimation of Spectroscopic Signals With an Improved Sparse Reconstruction Algorithm
,”
IEEE Sig. Proc. Lett.
,
24
(
5
), pp.
530
534
.
31.
Korkas
,
K. K.
, and
Fryzlewicz
,
P.
,
2017
, “
Multiple Change-Point Detection for Non-Stationary Time Series Using Wild Binary Segmentation
,”
Stat. Sin.
,
27
(
1
), pp.
287
311
.
You do not currently have access to this content.