Aerosol jet printing (AJP) is a complex process for additive electronics that is often unstable. To overcome this instability, observation while printing and control of the printing process using image-based monitoring is demonstrated. This monitoring is validated against images taken after the print and shown highly correlated and useful for the determination of printed linewidth. These images and the observed linewidth are used as input for closed-loop control of the printing process, with print speed changed in response to changes in the observed linewidth. Regression is used to relate these quantities and forms the basis of proportional and proportional integral control. Electrical test structures were printed with controlled and uncontrolled printing, and it was found that the control influenced their linewidth and electrical properties, giving improved uniformity in both size and electrical performance.

References

1.
Zhan
,
Z.
,
Yu
,
L.
,
Wei
,
J.
,
Zheng
,
C.
,
Sun
,
D.
, and
Wang
,
L.
,
2014
, “
Application of Aerosol Jet Technology in Through-Via Interconnection for MEMS Wafer-Level Packaging
,”
Microsyst. Technol.
,
21
(
2
), pp.
451
455
.
2.
Cai
,
F.
,
Pavlidis
,
S.
,
Papapolymerou
,
J.
,
Chang
,
Y. H.
,
Wang
,
K.
,
Zhang
,
C.
, and
Wang
,
B.
,
2014
, “
Aerosol Jet Printing for 3-D Multilayer Passive Microwave Circuitry
,”
2014 44th European Microwave Conference (EuMC)
,
Rome, Italy
,
Oct. 6–9
, pp.
512
515
.
3.
Rudorfer
,
A.
,
Tscherner
,
M.
,
Palfinger
,
C.
,
Reil
,
F.
,
Hartmann
,
P.
,
Seferis
,
I. E.
,
Zych
,
E.
, and
Wenzl
,
F. P.
,
2016
, “
A Study on Aerosol Jet Printing Technology in LED Module Manufacturing
,”
Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems
,
San Diego, CA
,
Aug. 28– Sept. 1
, Proc. SPIE 9954, p.
99540E
.
4.
Gupta
,
A. A.
,
Bolduc
,
A.
,
Cloutier
,
S. G.
, and
Izquierdo
,
R.
,
2016
, “
Aerosol Jet Printing for Printed Electronics Rapid Prototyping
,”
2016 IEEE International Symposium on Circuits and Systems (ISCAS)
,
Montreal, QC, Canada
,
May 22–25
, pp.
866
869
.
5.
Stoukatch
,
S.
,
Laurent
,
P.
,
Dricot
,
S.
,
Axisa
,
F.
,
Seronveaux
,
L.
,
Vandormael
,
D.
,
Beeckman
,
E.
,
Heusdens
,
B.
, and
Destiné
,
J.
,
2012
, “
Evaluation of Aerosol Jet Printing (AJP) Technology for Electronic Packaging and Interconnect Technique
,”
2012 4th Electronic System-Integration Technology Conference
,
Amsterdam, Netherlands
, pp.
1
9
.
6.
Seifert
,
T.
,
Baum
,
M.
,
Roscher
,
F.
,
Wiemer
,
M.
, and
Gessner
,
T.
,
2015
, “
Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects
,”
Mater. Today: Proc.
,
2
(
8
), pp.
4262
4271
. nanoFIS 2014 – Functional Integrated nanoSystems.
7.
Aga
,
R.
,
Lombardi
,
J.
,
Bartsch
,
C.
, and
Heckman
,
E.
,
2014
, “
Performance of a Printed Photodetector on a Paper Substrate
,”
IEEE Photonics Technol. Lett.
,
26
(
3
), pp.
305
308
.
8.
Li
,
S.
,
Park
,
J. G.
,
Wang
,
S.
,
Liang
,
R.
,
Zhang
,
C.
, and
Wang
,
B.
,
2014
, “
Working Mechanisms of Strain Sensors Utilizing Aligned Carbon Nanotube Network and Aerosol Jet Printed Electrodes
,”
Carbon
,
73
, pp.
303
309
.
9.
Paulsen
,
J. A.
,
Renn
,
M.
,
Christenson
,
K.
, and
Plourde
,
R.
,
2012
, “
Printing Conformal Electronics on 3D Structures with Aerosol Jet Technology
,”
Future of Instrumentation International Workshop (FIIW)
,
Gatlinburg, TN
, pp.
1
4
.
10.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4856
4864
.
11.
Verheecke
,
W.
,
Van Dyck
,
M.
,
Vogeler
,
F.
,
Voet
,
A.
, and
Valkenaers
,
H.
,
2012
, “
Optimizing Aerosol Jet®Printing of Silver Interconnects on Polyimide Film for Embedded Electronics Applications
,”
8th International DAAAM Baltic Conference
,
Tallinn, Estonia
,
Apr. 19–21
, pp.
373
379
.
12.
Goth
,
C.
,
Putzo
,
S.
, and
Franke
,
J.
,
2011
, “
Aerosol Jet Printing on Rapid Prototyping Materials for Fine Pitch Electronic Applications
,”
2011 IEEE 61st Electronic Components and Technology Conference (ECTC)
,
Lake Buena Vista, FL
, pp.
1211
1216
.
13.
Salary
,
R. R.
,
Lombardi
,
J. P.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2017
, “
Online Monitoring of Functional Electrical Properties in Aerosol Jet Printing Additive Manufacturing Process Using Shape-From-Shading Image Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101010
.
14.
Salary
,
R.
,
Lombardi
,
J.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2016
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
21
.
15.
Thompson
,
B.
, and
Yoon
,
H.-S.
,
2015
, “
Velocity-Regulated Path Planning Algorithm for Aerosol Printing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031020
.
16.
Smith
,
M.
,
Choi
,
Y. S.
,
Boughey
,
C.
, and
Kar-Narayan
,
S.
,
2017
, “
Controlling and Assessing the Quality of Aerosol Jet Printed Features for Large Area and Flexible Electronics
,”
Flexible and Printed Electronics
,
2
(
1
), p.
015004
.
17.
Gu
,
Y.
,
Gutierrez
,
D.
,
Das
,
S.
, and
Hines
,
D. R.
,
2017
, “
Inkwells for On-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing
,”
J. Micromech. Microeng.
,
27
(
9
), p.
097001
.
18.
Sun
,
H.
,
Wang
,
K.
,
Li
,
Y.
,
Zhang
,
C.
, and
Jin
,
R.
,
2017
, “
Quality Modeling of Printed Electronics in aerosol Jet Printing Based on Microscopic Images
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071012
.
19.
Li
,
Y.
,
Mohan
,
K.
,
Sun
,
H.
, and
Jin
,
R.
,
2017
, “
Ensemble Modeling of In Situ Features for Printed Electronics Manufacturing With In Situ Process Control Potential
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1864
1870
.
20.
Xiong
,
J.
, and
Zhang
,
G.
,
Apr. 2014
, “
Adaptive Control of Deposited Height in GMAW-Based Layer Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
962
968
.
21.
Xiong
,
J.
,
Yin
,
Z.
, and
Zhang
,
W.
,
2016
, “
Closed-Loop Control of Variable Layer Width for Thin-Walled Parts in Wire and Arc Additive Manufacturing
,”
J. Mater. Process. Technol.,
233
, pp.
100
106
.
22.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2006
,
Feedback Control of Dynamic Systems
, 5th ed,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
23.
Pozar
,
D. M.
,
2011
,
Microwave Engineering
, 4th ed,
Wiley Global Education
,
Hoboken, NJ
.
24.
Cai
,
F.
,
Chang
,
Y.-h.
,
Wang
,
K.
,
Khan
,
W.
,
Pavlidis
,
S.
, and
Papapolymerou
,
J.
,
2014
, “
High Resolution Aerosol Jet Printing of D- Band Printed Transmission Lines on Flexible LCP Substrate
,”
2014 IEEE MTT-S International Microwave Symposium (IMS)
,
Tampa, FL
, pp.
1
3
.
25.
Cai
,
F.
,
Chang
,
Y. H.
,
Wang
,
K.
,
Zhang
,
C.
,
Wang
,
B.
, and
Papapolymerou
,
J.
,
Oct. 2016
, “
Low-Loss 3-D Multilayer Transmission Lines and Interconnects Fabricated by Additive Manufacturing Technologies
,”
IEEE Trans. Microw. Theory Techn
,
64
(
10
), pp.
3208
3216
.
26.
Godlinski
,
D.
,
Zichner
,
R.
,
Zöllmer
,
V.
, and
Baumann
,
R. R.
,
2017
, “
Printing Technologies for the Manufacturing of Passive Microwave Components: Antennas
,”
Antennas Propag. IET Microw.
,
11
(
14
), pp.
2010
2015
.
27.
Huang
,
T.
,
Wang
,
S.
, and
He
,
K.
,
2015
, “
Quality Control for Fused Deposition Modeling Based Additive Manufacturing: Current research and future trends
,”
2015 First International Conference on Reliability Systems Engineering (ICRSE)
,
Beijing, China
, pp.
1
6
.
28.
Pinto-Lopera
,
J.
,
S. T. Motta
,
J.
, and
Absi Alfaro
,
S.
,
2016
, “
Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes
,”
Sensors
,
16
(
9
), pp.
1500
.
29.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
van Duin
,
S.
, and
Larkin
,
N.
,
2016
, “
Bead Modelling and Implementation of Adaptive MAT Path in Wire and Arc Additive Manufacturing
,”
Robot. Comput.-Integr. Manuf.,
39
, pp.
32
42
.
You do not currently have access to this content.