Aluminum alloys, which are high-strength lightweight materials, were processed by selective laser melting (SLM) with high-energy consumption and poor finish due to quick heat dissipation. Previous investigations reported that SLM with 300 W laser power and 500 mm/s scanning speed can process the aluminum alloys, such as Al-Si12 and AlSi10Mg. This work aims to process the powders to alter their properties and to reduce the laser intensity required in the process, and it also reports that the SLM-processed Al–Fe alloys utilize the metastable alloy by mechanical alloying (MA). The elemental Al and Fe powders were first alloyed in a ball mill in a relative short time period (∼15 h) employing high milling intensities, high ball-to-powder ratio (≥20:1), and high milling velocities (≥400 rpm), which produced fine metastable Al–Fe powders, and these powders were processed later by the SLM. The optimum laser power, the scanning speed, hatch distance, and substrate temperature were investigated by a series of experiments. Experimental results indicated that decreasing the laser energy density while increasing the laser scanning speed can benefit for smoother laser hatch lines, and the metastable Al5Fe2 alloy powders can be processed and stabilized under a 200-W laser energy density and a scanning speed of 1000 mm/s. It is expected that the combination of pre-excited materials in a metastable phase will open a new window to optimize the SLM process for aluminum alloys and other metallic alloys.

References

1.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
2.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
3.
Wolcott
,
P. J.
,
Pawlowski
,
C.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2017
, “
Seam Welding of Aluminum Sheet Using Ultrasonic Additive Manufacturing System
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011010
.
4.
O'Donnell
,
J.
,
Kim
,
M.
, and
Yoon
,
H. S.
,
2017
, “
A Review on Electromechanical Devices Fabricated by Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
010801
.
5.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
6.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
7.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1
, pp.
77
86
.
8.
Laureijs
,
R. E.
,
Roca
,
J. B.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J. L.
, and
Fuchs
,
E. R.
,
2017
, “
Metal Additive Manufacturing: Cost Competitive Beyond low Volumes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081010
.
9.
Fette
,
M.
,
Sander
,
P.
,
Wulfsberg
,
J.
,
Zierk
,
H.
,
Herrmann
,
A.
, and
Stoess
,
N.
,
2015
, “
Optimized and Cost-Efficient Compression Molds Manufactured by Selective Laser Melting for the Production of Thermoset Fiber Reinforced Plastic Aircraft Components
,”
Procedia CIRP
,
35
, pp.
25
30
.
10.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Young
,
P.
, and
Raymont
,
D.
,
2014
, “
Advanced Lightweight 316L Stainless Steel Cellular Lattice Structures Fabricated via Selective Laser Melting
,”
Mater. Des.
,
55
, pp.
533
541
.
11.
Olakanmi
,
E. O. T.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminum Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
12.
Deevi
,
S. C.
,
Sikka
,
V. K.
, and
Liu
,
C. T.
,
1997
, “
Processing, Properties, and Applications of Nickel and Iron Aluminides
,”
Prog. Mater. Sci.
,
42
(
1–4
), pp.
177
192
.
13.
Sasaki
,
T. T.
,
Ohkubo
,
T.
, and
Hono
,
K.
,
2009
, “
Microstructure and Mechanical Properties of Bulk Nanocrystalline Al–Fe Alloy Processed by Mechanical Alloying and Spark Plasma Sintering
,”
Acta Mater.
,
57
(
12
), pp.
3529
3538
.
14.
Baker
,
I.
, and
George
,
E. P.
,
1997
, “
Aluminides- Processing Properties and the Mechanical Properties of FeAl
,”
Int. Symp. Nickel Iron Aluminides: Process., Prop., Appl.
, pp.
145
156
.
15.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminum Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
.
16.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2016
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
.
17.
Buchbinder
,
D.
,
Meiners
,
W.
,
Wissenbach
,
K.
,
Müller-Lohmeier
,
K.
, and
Brandl
,
E.
,
2008
, “Rapid Manufacturing of Aluminum Parts for Serial Production via Selective Laser Melting (SLM),”
Aluminum Alloy: Their Physical and Mechanical Properties
, Vol.
2
,
Wiley-VCH
,
Aachen, Germany
, pp.
2394
2400
.
18.
Kenzari
,
S.
,
Bonina
,
D.
,
Dubois
,
J.
, and
Fournée
,
V.
,
2014
, “
Additive Manufacturing of Lightweight, Fully Al-Based Components Using Quasicrystals
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3108
3111
.
19.
Kuhn
,
H.
, ed.,
2012
,
Powder Metallurgy Processing: The Techniques and Analyses
,
Elsevier
,
New York
.
20.
da Silva
,
F. C.
,
Kazmierczak
,
K.
,
da Costa
,
C. E.
,
Milan
,
J. C. G.
, and
Torralba
,
J. M.
,
(2017)
, “
Zamak 2 Alloy Produced by Mechanical Alloying and Consolidated by Sintering and Hot Pressing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091011
.
21.
Prashanth
,
K. G.
, and
Eckert
,
J.
,
2017
, “
Formation of Metastable Cellular Microstructures in Selective Laser Melted Alloys
,”
J. Alloys Compd.
,
707
, pp.
27
34
.
22.
Zhou
,
F.
,
Lück
,
R.
,
Lu
,
K.
, and
Rühle
,
M.
,
2001
, “
Phase Transformation of a Dual Phase Al-Fe Alloy Prepared by Mechanical Alloying
,”
Zeitschrift für Metallkunde
, v,
92
, pp.
675
681
.
23.
Krasnowski
,
M.
, and
Kulik
,
T.
,
2009
, “
Nanocrystalline and Amorphous Al–Fe Alloys Containing 60–85% of Al Synthesised by Mechanical Alloying and Phase Transformations Induced by Heating of Milling Products
,”
Mater. Chem. Phys.
,
116
(
2–3
), pp.
631
637
.
24.
Zou
,
Y.
,
Saji
,
S.
, and
Kusabiraki
,
K.
,
2002
, “
Fast Amorphization and Crystallization in Al–Fe Binary System by High-Energy Ball Milling
,”
Mater. Res. Bull.
,
37
(
1
), pp.
123
131
.
25.
Suryanarayana
,
C.
,
2001
, “
Mechanical Alloying and Milling
,”
Prog. Mater. Sci.
,
46
(
1–2
), pp.
1
184
.
26.
Patterson
,
A. L.
,
1939
, “
The Scherrer Formula for X-ray Particle Size Determination
,”
Phys. Rev.
,
56
(
10
), pp.
978
.
27.
Huang
,
B.
,
Ishihara
,
K.
, and
Shingu
,
P. H.
,
1997
, “
Metastable Phases of Al–Fe System by Mechanical Alloying
,”
Mater. Sci. Eng.: A
,
231
(
1–2
), pp.
72
79
.
28.
Shamah
,
A. M.
,
Ibrahim
,
S.
, and
Hanna
,
F. F.
,
2011
, “
Formation of Nano Quasicrystalline and Crystalline Phases by Mechanical Alloying
,”
J. Alloys Compd.
,
509
(
5
), pp.
2198
2202
.
29.
Teng
,
C.
,
Gong
,
H.
,
Szabo
,
A.
,
Dilip
,
J. J. S.
,
Ashby
,
K.
,
Zhang
,
S.
,
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Simulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011009
.
30.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
On the Simulation Scalability of Predicting Residual Stress and Distortion in Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041013
.
31.
Ye
,
Q.
, and
Chen
,
S.
,
2017
, “
Numerical Modeling of Metal-Based Additive Manufacturing Using Level set Methods
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071019
.
32.
Huang
,
Y. L.
,
Liu
,
J.
,
Ma
,
N. H.
, and
Li
,
J. G.
,
2006
, “
Three-dimensional Analytical Model on Laser-Powder Interaction During Laser Cladding
,”
J. Laser Appl.
,
18
(
1
), pp.
42
46
.
33.
Kyogoku
,
H.
,
Hagiwara
,
M.
, and
Shinno
,
T.
,
2010
, “
Freeform Fabrication of Aluminum Alloy Prototypes Using Laser Melting
,” ,
Austin, TX
,
Aug. 9–11
.
34.
Buchbinder
,
D.
,
Schleifenbaum
,
H. B.
,
Heidrich
,
S.
,
Meiners
,
W.
, and
Bültmann
,
J.
,
2011
, “
High Power Selective Laser Melting (HP SLM) of Aluminum Parts
,”
Phys. Procedia
,
12
(
part-PA
), pp.
271
278
.
You do not currently have access to this content.