Assembly system configuration determines the topological arrangement of stations with defined logical material flow among them. The design of assembly system configuration involves (1) subassembly planning that defines subassembly tasks and between-task material flows and (2) workload balancing that determines the task-station assignments. The assembly system configuration should be flexibly changed and updated to cope with product design evolution and updating. However, the uncertainty in future product evolution poses significant challenges to the assembly system configuration design since the higher cost can be incurred if the assembly line suitable for future products is very different from that for the current products. The major challenges include (1) the estimation of reconfiguration cost, (2) unavailability of probability values for possible scenarios of product evolution, and (3) consideration of the impact of the subassembly planning on the task-station assignments. To address these challenges, this paper formulates a concurrent optimization problem to design the assembly system configuration by jointly determining the subassembly planning and task-station assignments considering uncertain product evolution. A new assembly hierarchy similarity model is proposed to estimate the reconfiguration effort by comparing the commonalities among different subassembly plans of current and potential future product designs. The assembly system configuration is chosen by maximizing both assembly hierarchy similarity and assembly system throughput under the worst-case scenario. A case study motivated by real-world scenarios demonstrates the applicability of the proposed method including scenario analysis.

References

1.
Benkamoun
,
N.
,
Huyet
,
A. L.
, and
Kouiss
,
K.
, “
Reconfigurable Assembly System Configuration Design Approaches for Product Change
,”
Proceedings of the 2013 International Conference on Industrial Engineering and Systems Management (IESM)
,
Rabat, Morocco
,
Oct. 28–30, 2013
.
2.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
,
1990
, “
AND/OR Graph Representation of Assembly Plans
,”
IEEE Trans. Robot. Autom.
,
6
(
2
), pp.
188
199
.
3.
Baldwin
,
D. F.
,
Abell
,
T. E.
,
Lui
,
M.-C.
,
De Fazio
,
T. L.
, and
Whitney
,
D. E.
,
1991
, “
An Integrated Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical Products
,”
IEEE Trans. Robot. Autom.
,
7
(
1
), pp.
78
94
.
4.
Jiang
,
Z.
,
2015
, “
Hierarchy Generation for Designing Assembly System for Product With Complex Liaison and Sub-Assembly Branches
,” Master’s thesis,
Florida State University
.
5.
Jiang
,
Z.
, and
Wang
,
H.
,
2016
, “
Assembly Hierarchy Generation for Assembly System Design for a Product Family
,”
ASME 2016 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1, 2016
.
6.
Wang
,
Y.
, and
Liu
,
J.
,
2013
, “
Subassembly Identification for Assembly Sequence Planning
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1
), pp.
781
793
.
7.
Koren
,
Y.
,
Heisel
,
U.
,
Jovane
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Ulsoy
,
G.
, and
Van Brussel
,
H.
,
1999
, “
Reconfigurable Manufacturing Systems
,”
CIRP Ann.-Manuf. Technol.
,
48
(
2
), pp.
527
540
.
8.
Koren
,
Y.
, and
Shpitalni
,
M.
,
2010
, “
Design of Reconfigurable Manufacturing Systems
,”
J. Manuf. Syst.
,
29
(
4
), pp.
130
141
.
9.
Rösiö
,
C.
, and
Säfsten
,
K.
,
2013
, “
Reconfigurable Production System Design—Theoretical and Practical Challenges
,”
J. Manuf. Technol. Manage.
,
24
(
7
), pp.
998
1018
.
10.
Bi
,
Z. M.
,
Lang
,
S. Y. T.
,
Shen
,
W.
, and
Wang
,
L.
,
2008
, “
Reconfigurable Manufacturing Systems: The State of the Art
,”
Int. J. Prod. Res.
,
46
(
4
), pp.
967
992
.
11.
Putnik
,
G.
,
Sluga
,
A.
,
ElMaraghy
,
H.
,
Teti
,
R.
,
Koren
,
Y.
,
Tolio
,
T.
, and
Hon
,
B.
,
2013
, “
Scalability in Manufacturing Systems Design and Operation: State-of-the-Art and Future Developments Roadmap
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
751
774
.
12.
Son
,
S.-Y.
,
Lennon Olsen
,
T.
, and
Yip-Hoi
,
D.
,
2001
, “
An Approach to Scalability and Line Balancing for Reconfigurable Manufacturing Systems
,”
Integr. Manuf. Syst.
,
12
(
7
), pp.
500
511
.
13.
Maler-Speredelozzi
,
V.
,
Koren
,
Y.
, and
Hu
,
S.
,
2003
, “
Convertibility Measures for Manufacturing Systems
,”
CIRP Ann.-Manuf. Technol.
,
52
(
1
), pp.
367
370
.
14.
Spicer
,
P.
, and
Carlo
,
H. J.
,
2006
, “
Integrating Reconfiguration Cost Into the Design of Multi-Period Scalable Reconfigurable Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
202
210
.
15.
Koren
,
Y.
,
Wang
,
W.
, and
Gu
,
X.
,
2017
, “
Value Creation Through Design for Scalability of Reconfigurable Manufacturing Systems
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1227
1242
.
16.
Wang
,
W.
, and
Koren
,
Y.
,
2012
, “
Scalability Planning for Reconfigurable Manufacturing Systems
,”
J. Manuf. Syst.
,
31
(
2
), pp.
83
91
.
17.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2013
, “
Assembly System Reconfiguration Planning
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041005
.
18.
Zhang
,
B.
,
Katinas
,
C.
, and
Shin
,
Y. C.
,
2018
, “
Robust Tool Wear Monitoring Using Systematic Feature Selection in Turning Processes With Consideration of Uncertainties
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081010
.
19.
Wang
,
Y.
,
Mendis
,
G. P.
,
Peng
,
S.
, and
Sutherland
,
J. W.
,
2018
, “
Component-Oriented Reassembly in Remanufacturing Systems: Managing Uncertainty and Satisfying Customer Needs
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021005
.
20.
Tapia
,
G.
,
King
,
W.
,
Johnson
,
L.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121006
.
21.
Ammar
,
O. B.
,
Hnaien
,
F.
,
Marian
,
H.
, and
Dolgui
,
A.
,
2016
, “Optimization Approaches for Multi-Level Assembly Systems Under Stochastic Lead Times,”
Metaheuristics for Production Systems
,
E.-G.
Talbi
,
F.
Yalaoui
, and
L.
Amodeo
, eds.,
Springer International Publishing
,
Cham
, pp.
93
107
.
22.
Hu
,
S. J.
,
Zhu
,
X.
,
Wang
,
H.
, and
Koren
,
Y.
,
2008
, “
Product Variety and Manufacturing Complexity in Assembly Systems and Supply Chains
,”
CIRP Ann.
,
57
(
1
), pp.
45
48
.
23.
Koren
,
Y.
,
Gu
,
X.
, and
Guo
,
W.
,
2018
, “
Reconfigurable Manufacturing Systems: Principles, Design, and Future Trends
,”
Front. Mech. Eng.
,
13
(
2
), pp.
121
136
.
24.
ElMaraghy
,
H.
,
Samy
,
S.
, and
Espinoza
,
V.
, “
A Classification Code for Assembly Systems
,”
Proceedings of the 3rd CIRP Conference on Assembly Technologies and Systems
,
Trondheim, Norway
,
June, 2010
.
25.
Hu
,
S. J.
,
Ko
,
J.
,
Weyand
,
L.
,
ElMaraghy
,
H.
,
Lien
,
T.
,
Koren
,
Y.
,
Bley
,
H.
,
Chryssolouris
,
G.
,
Nasr
,
N.
, and
Shpitalni
,
M.
,
2011
, “
Assembly System Design and Operations for Product Variety
,”
CIRP Ann.-Manuf. Technol.
,
60
(
2
), pp.
715
733
.
26.
Lee
,
G. H.
,
1997
, “
Reconfigurability Consideration Design of Components and Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
13
(
5
), pp.
376
386
.
27.
Youssef
,
A. M.
, and
ElMaraghy
,
H. A.
,
2006
, “
Assessment of Manufacturing Systems Reconfiguration Smoothness
,”
Int. J. Adv. Manuf. Technol.
,
30
(
1–2
), pp.
174
193
.
28.
Jiao
,
J.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
29.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
,
2001
, “
Assessing Value in Platformed Product Family Design
,”
Res. Eng. Des.
,
13
(
1
), pp.
30
41
.
30.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms
,
Simon and Schuster
,
New York
.
31.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Perez-Duarte
,
A.
, “
Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2, 2002
.
32.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.
33.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2006
, “Commonality Indices for Assessing Product Families,”
Product Platform and Product Family Design
,
Springer
,
New York
, pp.
107
129
.
34.
Bryan
,
A.
,
Ko
,
J.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2007
, “
Co-Evolution of Product Families and Assembly Systems
,”
CIRP Ann.
,
56
(
1
), pp.
41
44
.
35.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2012
, “
A Co-Evolution Model for Prediction and Synthesis of New Products and Manufacturing Systems
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051008
.
36.
Son
,
S.-Y.
,
2000
, “
Design Principles and Methodologies for Reconfigurable Machining Systems
,” Dissertation,
University of Michigan
.
37.
Youssef
,
A. M.
, and
ElMaraghy
,
H. A.
,
2007
, “
Optimal Configuration Selection for Reconfigurable Manufacturing Systems
,”
Int. J. Flex. Manuf. Syst.
,
19
(
2
), pp.
67
106
.
38.
Ye
,
H.
, and
Liang
,
M.
,
2006
, “
Simultaneous Modular Product Scheduling and Manufacturing Cell Reconfiguration Using a Genetic Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
984
995
.
39.
Yuan
,
M.
,
Deng
,
K.
,
Chaovalitwongse
,
W. A.
, and
Cheng
,
S.
,
2017
, “
Multi-Objective Optimal Scheduling of Reconfigurable Assembly Line for Cloud Manufacturing
,”
Optim. Methods Softw.
,
32
(
3
), pp.
581
593
.
40.
Ko
,
J.
, and
Hu
,
S. J.
,
2009
, “
Manufacturing System Design Considering Stochastic Product Evolution and Task Recurrence
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051012
41.
Ko
,
J.
, and
Hu
,
S. J.
, “
Manufacturing System Design Considering Generational Product Evolution and Task Recurrence
,”
Proceedings of the ASME International Conference on Manufacturing Science and Engineering
,
Atlanta, GA
,
Oct. 15–18, 2007
.
42.
Tao
,
F.
,
Bi
,
L.
,
Zuo
,
Y.
, and
Nee
,
A. Y. C.
,
2017
, “
A Cooperative Co-Evolutionary Algorithm for Large-Scale Process Planning With Energy Consideration
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061016
.
43.
Goyal
,
K. K.
,
Jain
,
P.
, and
Jain
,
M.
,
2013
, “
A Comprehensive Approach to Operation Sequence Similarity Based Part Family Formation in the Reconfigurable Manufacturing System
,”
Int. J. Prod. Res.
,
51
(
6
), pp.
1762
1776
.
44.
Gusfield
,
D.
,
1997
,
Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology
,
Cambridge University Press
,
Cambridge
.
45.
Jiang
,
T.
, and
Li
,
M.
,
1995
, “
On the Approximation of Shortest Common Supersequences and Longest Common Subsequences
,”
SIAM J. Comput.
,
24
(
5
), pp.
1122
1139
.
46.
Koza
,
J. R.
,
1994
, “
Genetic Programming as a Means for Programming Computers by Natural Selection
,”
Stat. Comput.
,
4
(
2
), pp.
87
112
.
47.
Eiben
,
A. E.
, and
Smith
,
J. E.
,
2015
, “Natural Computing Series,”
Introduction to Evolutionary Computing
,
Springer-Verlag
,
Berlin, Germany
.
48.
Lima
,
E. B. d.
,
Pappa
,
G. L.
,
Almeida
,
J. M. d.
,
Gonçalves
,
M. A.
, and
Meira
,
W.
, “
Tuning Genetic Programming Parameters with Factorial Designs
,”
Proceedings of the IEEE Congress on Evolutionary Computation
,
Barcelona, Spain
,
July 18–23, 2010
.
You do not currently have access to this content.