Titanium alloy Ti-5Al-5V-3Cr-0.5Fe (Ti-5553) is a new generation of near-beta titanium alloy that is commonly used in the aerospace industry. Machining is one of the manufacturing methods to produce parts that are made of this near-beta alloy. This study presents the machining performance of new generation near-beta alloys, namely, Ti-5553, by focusing on a high-speed cutting process under cryogenic cooling conditions and dry machining. The machining experiments were conducted under a wide range of cutting speeds, including high speeds that used liquid nitrogen (LN2) and carbon dioxide (CO2) as cryogenic coolants. The experimental data on the cutting temperature, tool wear, force components, chip breakability, dimensional accuracy, and surface integrity characteristics are presented and were analyzed to evaluate the machining process of this alloy and resulting surface characteristics. This study shows that cryogenic machining improved the machining performance of the Ti-5553 alloy by substantially reducing the tool wear, cutting temperature, and dimensional deviation of the machined parts. The cryogenic machining also produced shorter chips as compared to dry machining.

References

1.
Hua
,
K.
,
Xue
,
X. Y.
,
Kou
,
H. C.
,
Fan
,
J. K.
,
Tang
,
B.
, and
Li
,
J. S.
,
2014
, “
High Temperature Deformation Behaviour of Ti–5Al–5Mo–5V–3Cr During Thermomechanical Processing
,”
Mater. Res. Innov.
,
18
, pp.
S4-202
S4-206
.
2.
Hua
,
K.
,
Xue
,
X. Y.
,
Kou
,
H. C.
,
Fan
,
J. K.
,
Tang
,
B.
, and
Li
,
J. S.
,
2014
, “
Characterization of Hot Deformation Microstructure of a Near Beta Titanium Alloy Ti-5553
,”
J. Alloys Compd.
,
615
, pp.
531
537
.
3.
Dehghan-Manshadi
,
A.
, and
Dippenaar
,
R. J.
,
2011
, “
Development of α-Phase Morphologies During Low Temperature Isothermal Heat Treatment of a Ti–5Al–5Mo–5V–3Cr Alloy
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1833
1839
.
4.
Nag
,
S.
,
Banerjee
,
R.
,
Hwang
,
J. Y.
,
Harper
,
M.
, and
Fraser
,
H. L.
,
2009
, “
Elemental Partitioning Between α and β Phases in the Ti–5Al–5Mo–5V–3Cr–0.5 Fe (Ti-5553) Alloy
,”
Philos. Mag.
,
89
(
6
), pp.
535
552
.
5.
Ezugwu
,
E.
,
Bonney
,
J.
, and
Yamane
,
Y.
,
2003
, “
An Overview of the Machinability of Aeroengine Alloys
,”
J. Mater. Proc. Technol.
,
134
(
2
), pp.
233
253
.
6.
Ezugwu
,
E.
, and
Wang
,
Z.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Proc. Technol.
,
68
(
3
), pp.
262
274
.
7.
Arrazola
,
P.-J.
,
Garay
,
A.
,
Iriarte
,
L. M.
,
Armendia
,
M.
,
Marya
,
S.
, and
Le Maitre
,
F.
,
2009
, “
Machinability of Titanium Alloys (Ti6Al4V and Ti555.3)
,”
J. Mater. Proc. Technol.
,
209
(
5
), pp.
2223
2230
.
8.
Wagner
,
V.
,
Baili
,
M.
, and
Dessein
,
G.
,
2015
, “
The Relationship Between the Cutting Speed, Tool Wear, and Chip Formation During Ti-5553 Dry Cutting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
893
912
.
9.
Baili
,
M.
,
Wagner
,
V.
,
Dessein
,
G.
,
Sallaberry
,
J.
, and
Lallement
,
D.
,
2011
, “
An Experimental Investigation of Hot Machining With Induction to Improve Ti-5553 Machinability
,”
Appl. Mech. Mater.
,
62
, pp.
67
76
.
10.
Sun
,
Y.
,
Huang
,
B.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2015
, “
Enhanced Machinability of Ti-5553 Alloy From Cryogenic Machining: Comparison With MQL and Flood-Cooled Machining and Modeling
,”
Proc. CIRP
,
31
, pp.
477
482
.
11.
Kaynak
,
Y.
,
Gharibi
,
A.
, and
Ozkutuk
,
M.
,
2017
, “
Experimental and Numerical Study of Chip Formation in Orthogonal Cutting of Ti-5553 Alloy: The Influence of Cryogenic, MQL, and High Pressure Coolant Supply
,”
Int. J. Adv. Manuf. Technol.
,
94
, pp.
1
18
.
12.
Braham-Bouchnak
,
T.
,
Germain
,
G.
,
Morel
,
A.
, and
Furet
,
B.
,
2015
, “
Influence of High-Pressure Coolant Assistance on the Machinability of the Titanium Alloy Ti555-3
,”
Mach. Sci. Technol.
,
19
(
1
), pp.
134
151
.
13.
Wagner
,
V.
,
Baili
,
M.
,
Dessein
,
G.
, and
Lallement
,
D.
,
2011
, “
Experimental Study of Coated Carbide Tools Behaviour: Application for Ti-5-5-5-3 Turning
,”
Int. J. Mach. Mach. Mater.
,
9
(
3
), pp.
233
248
.
14.
Ezugwu
,
E.
,
2005
, “
Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12
), pp.
1353
1367
.
15.
Ezugwu
,
E.
, and
Bonney
,
J.
,
2004
, “
Effect of High-Pressure Coolant Supply When Machining Nickel-Base, Inconel 718, Alloy With Coated Carbide Tools
,”
J. Mater. Proc. Technol.
,
153
, pp.
1045
1050
.
16.
Kaynak
,
Y.
,
Karaca
,
H. E.
,
Noebe
,
R. D.
, and
Jawahir
,
I. S.
,
2013
, “
Tool-Wear Analysis in Cryogenic Machining of NiTi Shape Memory Alloys: A Comparison of Tool-Wear Performance With Dry and MQL Machining
,”
Wear
,
306
, pp.
51
63
.
17.
Machai
,
C.
, and
Biermann
,
D.
,
2011
, “
Machining of β-Titanium-Alloy Ti–10V–2Fe–3Al Under Cryogenic Conditions: Cooling With Carbon Dioxide Snow
,”
J. Mater. Proc. Technol.
,
211
(
6
), pp.
1175
1183
.
18.
Shokrani
,
A.
,
Dhokia
,
V.
,
Munoz-Escalona
,
P.
, and
Newman
,
S. T.
,
2013
, “
State-of-the-Art Cryogenic Machining and Processing
,”
Int. J. Comput. Integr. Manuf.
,
26
(
7
), pp.
616
648
.
19.
Courbon
,
C.
,
Pusavec
,
F.
,
Dumont
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2013
, “
Tribological Behaviour of Ti6Al4V and Inconel718 Under Dry and Cryogenic Conditions—Application to the Context of Machining With Carbide Tools
,”
Tribol. Int.
,
66
, pp.
72
82
.
20.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S. T.
,
Pusavec
,
F.
,
Putz
,
M.
,
Rech
,
J.
, and
Schulze
,
V.
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
713
736
.
21.
Trabelsi
,
S.
,
Morel
,
A.
,
Germain
,
G.
, and
Bouaziz
,
Z.
,
2017
, “
Tool Wear and Cutting Forces Under Cryogenic Machining of Titanium Alloy (Ti17)
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
1493
1505
.
22.
Huang
,
C.
,
Zhao
,
Y.
,
Xin
,
S.
,
Zhou
,
W.
,
Li
,
Q.
, and
Zeng
,
W.
,
2017
, “
Effect of Microstructure on Tensile Properties of Ti–5Al–5Mo–5V–3Cr–1Zr Alloy
,”
J. Alloys Compd.
,
693
, pp.
582
591
.
23.
Kar
,
S. K.
,
Ghosh
,
A.
,
Fulzele
,
N.
, and
Bhattacharjee
,
A.
,
2013
, “
Quantitative Microstructural Characterization of a Near Beta Ti Alloy, Ti-5553 Under Different Processing Conditions
,”
Mater. Charact.
,
81
, pp.
37
48
.
24.
Nag
,
S.
,
Banerjee
,
R.
,
Srinivasan
,
R.
,
Hwang
,
J. Y.
,
Harper
,
M.
, and
Fraser
,
H. L.
,
2009
, “
ω-Assisted Nucleation and Growth of α Precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5 Fe β Titanium Alloy
,”
Acta Mater.
,
57
(
7
), pp.
2136
2147
.
25.
Oxley
,
P. L. B.
,
1990
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Publisher
,
Chichester
.
26.
Knight
,
W. A.
, and
Boothroyd
,
G.
,
2005
,
Fundamentals of Metal Machining and Machine Tools
, Vol.
198
,
CRC Press
,
Boca Raton, FL
.
27.
Campbell
,
F. C.
, Jr.
,
2011
,
Manufacturing Technology for Aerospace Structural Materials
,
Elsevier
,
New York
.
28.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2012
, “
Environmentally Conscious Machining of Difficult-to-Machine Materials With Regard to Cutting Fluids
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
83
101
.
29.
Jawahir
,
I. S.
,
Ghosh
,
R.
,
Fang
,
X. D.
, and
Li
,
P. X.
,
1995
, “
An Investigation of the Effects of Chip Flow on Tool-Wear in Machining With Complex Grooved Tools
,”
Wear
,
184
(
2
), pp.
145
154
.
30.
Guo
,
Y.
,
Li
,
W.
, and
Jawahir
,
I. S.
,
2009
, “
Surface Integrity Characterization and Prediction in Machining of Hardened and Difficult-to-Machine Alloys: A State-of-Art Research Review and Analysis
,”
Mach. Sci. Technol.
,
13
(
4
), pp.
437
470
.
31.
Manivannan
,
R.
, and
Kumar
,
M. P.
,
2017
, “
Improving the Machining Performance Characteristics of the µEDM Drilling Process by the Online Cryogenic Cooling Approach
,”
Mater. Manuf. Proc.
,
33
(
4
), pp.
390
396
.
32.
Kaynak
,
Y.
,
2014
, “
Evaluation of Machining Performance in Cryogenic Machining of Inconel 718 and Comparison With Dry and MQL Machining
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
919
933
.
33.
Stephenson
,
D. A.
, and
Agapiou
,
J. S.
,
2016
,
Metal Cutting Theory and Practice
,
CRC Press
,
Boca Raton, FL
.
34.
Wanigarathne
,
P. C.
,
Liew
,
J.
,
Wang
,
X.
,
Dillon
,
O. W.
, Jr.
, and
Jawahir
,
I. S.
,
2004
, “
Assessment of Process Sustainability for Product Manufacture in Machining Operations
,”
Proceedings of the Global Conference on Sustainable Product Development and Life Cycle Engineering
,
Berlin, Germany
, September 29–October 1.
35.
Jawahir
,
I. S.
,
1990
, “
On the Controllability of Chip Breaking Cycles and Modes of Chip Breaking in Metal Machining
,”
CIRP Ann. Manuf. Technol.
,
39
(
1
), pp.
47
51
.
36.
Qin
,
D.
,
Lu
,
Y.
,
Guo
,
D.
,
Zheng
,
L.
,
Liu
,
Q.
, and
Zhou
,
L.
,
2013
, “
Tensile Deformation and Fracture of Ti–5Al–5V–5Mo–3Cr–1.5 Zr–0.5 Fe Alloy at Room Temperature
,”
Mater. Sci. Eng. A
,
587
, pp.
100
109
.
37.
Mishra
,
R. S.
,
Stolyarov
,
V. V.
,
Echer
,
C.
,
Valiev
,
R. Z.
, and
Mukherjee
,
A. K.
,
2001
, “
Mechanical Behavior and Superplasticity of a Severe Plastic Deformation Processed Nanocrystalline Ti–6Al–4V Alloy
,”
Mater. Sci. Eng. A
,
298
(
1
), pp.
44
50
.
38.
Groover
,
M. P.
,
2007
,
Fundamentals of Modern Manufacturing: Materials Processes, and Systems
,
John Wiley & Sons
,
Hoboken, NJ
.
39.
Germain
,
G.
,
Morel
,
A.
, and
Braham-Bouchnak
,
T.
,
2013
, “
Identification of Material Constitutive Laws Representative of Machining Conditions for Two Titanium Alloys: Ti6Al4V and Ti555-3
,”
J. Eng. Mater. Technol.
,
135
(
3
),
031002
.
40.
Kaynak
,
Y.
,
Gharibi
,
A.
,
Yilmaz
,
U.
,
Koklu
,
U.
, and
Aslantas
,
K.
,
2018
, “
A Comparison of Flood Cooling, Minimum Quantity Lubrication and High Pressure Coolant on Machining and Surface Integrity of Titanium Ti-5553 Alloy
,”
J. Manuf. Proc.
,
34
, pp.
503
512
.
You do not currently have access to this content.