This paper presents a comprehensive experimental study in exploring the influence of key printing parameters on mechanical properties and failure mechanisms of acrylonitrile butadiene styrene (ABS) material. Three parameters with three levels—layer thickness (0.09 mm, 0.19 mm, and 0.39 mm), printing plane (XY, YZ, and ZX), and printing orientation (horizontal, diagonal, and vertical)—are considered, which form an L27 experimental design. Following L27, tensile and compressive specimens are fabricated and tested. Young's modulus, yield strength, failure strength, and strain of specimens are measured, evaluated, and compared with their injection-molded counterparts. Experimental results indicate that tensile specimens with a layer thickness of 0.09 mm and printing plane orientation of YZ-H reveal the highest stiffness and failure strength. While injection-molded specimen shows the highest yield strength, ductility of printed specimens is 1.45 times larger than that of injection-molded part. YZ along with XY specimens shows a neat and clean standard fracture failure at 45 deg, where the layers reorient themselves followed by stretching before fracture failure, thus providing sufficient ductility as opposed to ZX specimens, which fail along the direction perpendicular to the loading. Compressive XY-H and XY-D specimens have the highest stiffness and yield strength, and failure mechanisms involve initial compression followed by squeezing of layers leading to compactness followed by breakage due to tearing off or fracture of layers. The findings imply that anisotropy of fused deposition modeling (FDM) parts cannot be avoided and hence the appropriate parameters must be chosen, which satisfy the intended properties of the material subject to specific loading scenario.

References

1.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2015
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1
), pp.
389
405
.
2.
Butscher
,
A.
,
Bohner
,
M.
,
Doebelin
,
N.
,
Hofmann
,
S.
, and
Müller
,
R.
,
2013
, “
New Depowdering-Friendly Designs for Three-Dimensional Printing of Calcium Phosphate Bone Substitutes
,”
Acta Biomater.
,
9
(
11
), pp.
9149
9158
.
3.
Vaezi
,
M.
, and
Yang
,
S.
,
2015
, “
Extrusion-Based Additive Manufacturing of PEEK for Biomedical Applications
,”
Virtual Phys. Prototyping
,
10
(
3
), pp.
123
135
.
4.
Cantrell
,
J.
, Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C., and Ifju, P.,
2017
, “
Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts
,”
Advancement of Optical Methods in Experimental Mechanics
, Vol.
3
,
S.
Yoshida
,
L.
Lamberti
, and
C.
Sciammarella
, eds.,
Springer International Publishing
, Berlin, pp.
89
105
.
5.
Pandremenos
,
J.
,
Paralikas
,
J.
,
Chryssolouris
,
G.
,
Dybala
,
B.
, and
Gunnink
,
J. W.
,
2008
, “
RM Product Development: Design Principles, Simulation and Tool
,”
International Conference on Additive Technologies
, Ptuj, Slovenia, Sept. 16–18.
6.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann.—Manuf. Technol.
,
52
(
2
), pp.
589
609
.
7.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.
8.
Boschetto
,
A.
, and
Bottini
,
L.
,
2015
, “
Surface Improvement of Fused Deposition Modeling Parts by Barrel Finishing
,”
Rapid Prototyping J.
,
21
(
6
), pp.
686
696
.
9.
Durgun
,
I.
, and
Ertan
,
R.
,
2014
, “
Experimental Investigation of FDM Process for Improvement of Mechanical Properties and Production Cost
,”
Rapid Prototyping J.
,
20
(
3
), pp.
228
235
.
10.
Sood
,
A. K.
,
Ohdar
,
R. K.
, and
Mahapatra
,
S. S.
,
2009
, “
Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method
,”
Mater. Des.
,
30
(
10
), pp.
4243
4252
.
11.
Lee
,
C. S.
,
Kim
,
S. G.
,
Kim
,
H. J.
, and
Ahn
,
S. H.
,
2007
, “
Measurement of Anisotropic Compressive Strength of Rapid Prototyping Parts
,”
J. Mater. Process. Technol.
,
187–188
, pp.
627
630
.
12.
Ahn
,
S.-H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.
13.
Lanzotti
,
A.
,
Grasso
,
M.
,
Staiano
,
G.
, and
Martorelli
,
M.
,
2015
, “
The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA With an Open-Source 3-D Printer
,”
Rapid Prototyping J.
,
21
(
5
), pp.
604
617
.
14.
Christiyan
,
K. G. J.
,
Chandrasekhar
,
U.
, and
Venkateswarlu
,
K.
,
2016
, “
A Study on the Influence of Process Parameters on the Mechanical Properties of 3D Printed ABS Composite
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
114
(
1
), p.
012109
.
15.
Croccolo
,
D.
,
De Agostinis
,
M.
, and
Olmi
,
G.
,
2013
, “
Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30
,”
Comput. Mater. Sci.
,
79
, pp.
506
518
.
16.
Sood
,
A. K.
,
Ohdar
,
R. K.
, and
Mahapatra
,
S. S.
,
2012
, “
Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement
,”
J. Adv. Res.
,
3
(
1
), pp.
81
90
.
17.
Tymrak
,
B. M.
,
Kreiger
,
M.
, and
Pearce
,
J. M.
,
2014
, “
Mechanical Properties of Components Fabricated With Open-Source 3-D Printers Under Realistic Environmental Conditions
,”
Mater. Des.
,
58
, pp.
242
246
.
18.
Nikzad
,
M.
,
Masood
,
S. H.
, and
Sbarski
,
I.
,
2011
, “
Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling
,”
Mater. Des.
,
32
(
6
), pp.
3448
3456
.
19.
Es-Said
,
O. S.
,
Foyos
,
J.
,
Noorani
,
R.
,
Mendelson
,
M.
,
Marloth
,
R.
, and
Pregger
,
B. A.
,
2000
, “
Effect of Layer Orientation on Mechanical Properties of Rapid Prototyped Samples
,”
Mater. Manuf. Processes
,
15
(
1
), pp.
107
122
.
20.
Panda
,
S. K.
,
2009
, “
Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique
,”
Intell. Inf. Manage.
,
1
(
2
), pp.
89
97
.
21.
Wang
,
T.-M.
,
Xi
,
J.-T.
, and
Jin
,
Y.
,
2006
, “
A Model Research for Prototype Warp Deformation in the FDM Process
,”
Int. J. Adv. Manuf. Technol.
,
33
(
11
), pp.
1087
1096
.
22.
Zhang
,
Y.
, and
Chou
,
K.
,
2008
, “
A Parametric Study of Part Distortions in Fused Deposition Modelling Using Three-Dimensional Finite Element Analysis
,”
Proc. Inst. Mech. Eng.: Part B
,
222
(
8
), pp.
959
968
.
23.
Wu
,
W.
,
Geng
,
P.
,
Li
,
G.
,
Zhao
,
D.
,
Zhang
,
H.
, and
Zhao
,
J.
,
2015
, “
Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study Between PEEK and ABS
,”
Materials
,
8
(
9
), pp.
5834
5846
.
24.
Onwubolu
,
G. C.
, and
Rayegani
,
F.
,
2014
, “
Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process
,”
Int. J. Manuf. Eng.
,
2014
, p.
598531
.
25.
Mohamed
,
O. A.
,
Masood
,
S. H.
,
Bhowmik
,
J. L.
,
Nikzad
,
M.
, and
Azadmanjiri
,
J.
,
2016
, “
Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment
,”
J. Mater. Eng. Perform.
,
25
(
7
), pp.
2922
2935
.
26.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2015
, “
Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects
,”
Adv. Manuf.
,
3
(
1
), pp.
42
53
.
27.
ASTM
,
2014
, “
Standard Test Method for Tensile Properties of Plastics
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D638-14
.
28.
Giboz
,
J.
,
Copponnex
,
T.
, and
Mélé
,
P.
,
2017
, “
Analysis of the Influence of the Injection Molding Process on the Crystallization Kinetics of a HDPE
,”
J. Appl. Polym. Sci.
,
134
(
1
), p. 44239.
29.
Chen
,
W.-C.
,
Nguyen
,
M.-H.
,
Chiu
,
W.-H.
,
Chen
,
T.-N.
, and
Tai
,
P.-H.
,
2016
, “
Optimization of the Plastic Injection Molding Process Using the Taguchi Method, RSM, and Hybrid GA-PSO
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
1873
1886
.
30.
Taufik
,
M.
, and
Jain
,
P. K.
,
2016
, “
A Study of Build Edge Profile for Prediction of Surface Roughness in Fused Deposition Modeling
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061002
.
You do not currently have access to this content.