The paper contains an experimental study of microcutting intended to help the optimization of the grinding process of the oxide ceramic CM332 (99.5% Al2O3) grinding. The need for investigating the mechanisms occurring between the abrasive material and the ceramic is imposed by the fact that grinding is the dominant technology used to achieve the required quality of the workpiece surface finish. The microcutting process was performed with a single diamond cone-shaped grain of tip radius of 0.2 mm at varying depths of cut. The investigations were carried out to determine the normal and tangential cutting forces, the critical penetration depth and the specific grinding energy as a function of the grain penetration speed and depth. The critical grain penetration depth separating ductile flow from brittle fracture falls within the 4–6 μm range. The values of the critical penetration depth are also consistent with the results of changes in the cutting forces and the specific grinding energy. The chip formation mechanism is associated with the presence of median/radial and lateral cracks, ductile flow, chipping along the groove, and crushing beneath the diamond grain, all this affecting the quality of the ceramic's machined surface.

References

1.
Zhang
,
J.
, and
Sakai
,
M.
,
2004
, “
Geometrical Effect of Pyramidal Indenters on the Elastoplastic Contact Behaviors of Ceramics and Metals
,”
Mater. Sci. Eng.
,
381
(
1–2
), pp.
62
70
.10.1016/j.msea.2004.04.015
2.
Chai
,
H.
, and
Lawn
,
B. R.
,
2007
, “
A Universal Relation for Edge Chipping From Sharp Contacts in Brittle Materials: A Simple Means of Toughness Evaluation
,”
Acta Mater.
,
55
(
7
), pp.
2555
2561
.10.1016/j.actamat.2006.10.061
3.
Yan
,
J.
,
Karlsson
,
A. M.
, and
Chenb
,
X.
,
2007
, “
On Internal Cone Cracks Induced by Conical Indentation in Brittle Materials
,”
Eng. Fract. Mech.
,
74
(
16
), pp.
2535
2546
.10.1016/j.engfracmech.2006.12.005
4.
Lube
,
T.
,
2001
, “
Indentation Crack Profiles in Silicon Nitride
,”
J Eur. Ceram. Soc.
,
21
(
2
), pp.
211
218
.10.1016/S0955-2219(00)00197-7
5.
Yonezu
,
A.
,
Xu
,
B.
, and
Chen
,
X.
,
2009
, “
Indentation Induced Lateral Crack in Ceramics With Surface Hardening
,”
Mater. Sci. Eng.
,
507
(
1–2
), pp.
226
235
.10.1016/j.msea.2008.12.001
6.
Zhang
,
W.
, and
Subhash
,
G.
,
2001
, “
An Elastic-Plastic-Cracking Model for Finite Element Analysis of Indentation Cracking in Brittle Materials
,”
Int. J. Solids Struct.
,
38
(
34–35
), pp.
5893
5913
.10.1016/S0020-7683(00)00406-6
7.
Chen
,
X.
,
Yan
,
J.
, and
Karlsson
,
A. M.
,
2006
, “
On the Determination of Residual Stress and Mechanical Properties by Indentation
,”
Mater. Sci. Eng.: A
,
416
(
1–2
), pp.
139
149
.10.1016/j.msea.2005.10.034
8.
Latella
,
B. A.
,
Liu
,
T.
, and
Atanacio
,
A. J.
,
2002
, “
Effect of Grain Size on Hertzian Contact Damage in 9 mol % Ce-TZP Ceramics
,”
J. Eur. Ceram. Soc.
,
22
(
12
), pp.
1971
1979
.10.1016/S0955-2219(01)00527-1
9.
Chiaia
,
B.
,
2001
, “
Fracture Mechanisms Induced in a Brittle Material by Hard Cutting Indentor
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
7747
7768
.10.1016/S0020-7683(01)00117-2
10.
Anton
,
R. J.
, and
Subhash
,
G.
,
2000
, “
Dinamic Vickers Indentation of Brittle Materials
,”
Wear
,
239
(
1
), pp.
27
35
.10.1016/S0043-1648(99)00364-6
11.
Kan
,
Y.
,
Liu
,
H.
,
Zhang
,
S. H.
,
Zhang
,
L. W.
, and
Cheng
,
M.
,
2013
, “
A New Crack Healing Kinetic Model and Application of Crack Healing Diagram
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051003
.10.1115/1.4024764
12.
Song
,
X. F.
,
Peng
,
J. H.
,
Yin
,
L.
, and
Lin
,
B.
,
2013
, “
A Machining Science Approach to Dental Cutting of Glass Ceramics Using an Electric Handpiece and Diamond Burs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011014
.10.1115/1.4023273
13.
Elkaseer Abdelrahman
,
A. M.
,
Dimov
,
S. S.
,
Popov
,
K. B.
,
Negm
,
M.
, and
Minev
,
R.
,
2012
, “
Modeling the Material Microstructure Effects on the Surface Generation Process in Microendmilling of Dual-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
044501
.10.1115/1.4006851
14.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2012
, “
A Model to Determine the Effect of Tool Diameter on the Critical Feed Rate for Ductile–Brittle Transition in Milling Process of Brittle Material
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051012
.10.1115/1.4007462
15.
Nakajima
,
T.
,
Uno
,
Y.
, and
Fujiwara
,
T.
,
1989
, “
Cutting Mechanisms of Fine Ceramics With a Single Point Diamond
,”
Precis. Eng.
,
11
(
1
), pp.
19
25
.10.1016/0141-6359(89)90005-6
16.
Tanovic
,
L. J.
,
Bojanic
,
P.
,
Puzovic
,
R.
, and
Milutinovic
,
M.
,
2011
, “
Experimental Investigation of Microcutting Mechanisms in Granite Grinding
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
024501
.10.1115/1.4003521
17.
Tanovic
,
L.
,
Bojanic
,
P.
,
Popovic
,
M.
,
Belic
,
Z.
, and
Trifkovic
,
S.
,
2012
, “
Mechanisms in Oxide-Carbide Ceramic BOK 60 Grinding
,”
Int. J. Adv. Manuf. Technol.
,
58
(
9–12
), pp.
985
989
.10.1007/s00170-011-3449-5
18.
Desa
,
O.
, and
Bahadur
,
S.
,
2001
, “
The Effect of Lubricants in Single Point Scratching and Abrasive Machining of Alumina and Silicon Nitride
,”
Wear
,
251
(
1–12
), pp.
1085
1093
.10.1016/S0043-1648(01)00728-1
19.
Xu
,
H. H. K.
,
Wei
,
L.
, and
Jahanmir
,
S.
,
1995
, “
Grinding Force and Microcrack Density in Abrasive Machining of Silicon Nitride
,”
J. Mater. Res.
,
10
(
12
), pp.
3204
3209
.10.1557/JMR.1995.3204
20.
Zhang
,
B.
,
1999
, “
Helical Scan Grinding of Brittle and Ductile Materials
,”
J. Mater. Process. Technol.
,
91
(
1–3
), pp.
196
205
.10.1016/S0924-0136(98)00420-8
21.
Chen
,
X.
, and
Rowe
,
W. B.
,
1996
, “
Analysis and Simulations of the Grinding Process Part 1 Generation of the Grinding Wheel Surface
,”
Int. J. Mach. Tools Manuf.
,
36
(
8
), pp.
871
882
.10.1016/0890-6955(96)00116-2
22.
Huang
,
H.
, and
Liu
,
Y. C.
,
2003
, “
Experimental Investigations of Machining Characteristics and Removal Mechanisms of Advanced Ceramics in High Speed Deep Grinding
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
811
823
.10.1016/S0890-6955(03)00050-6
23.
Zhang
,
B.
,
Zheng
,
X. L.
,
Tokura
,
H.
, and
Yoshikawa
,
M.
,
2003
, “
Grinding Induced Damage in Ceramics
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
353
364
.10.1016/S0924-0136(02)00952-4
24.
Agarwal
,
S.
, and
Rao
,
P. V.
,
2008
, “
Experimental Investigations of Surface/Subsurface Damage Formation and Material Removal Mechanisms in SiC Grinding
,”
Int. J. Mach. Tools Manuf.
,
48
(
6
), pp.
698
710
.10.1016/j.ijmachtools.2007.10.013
25.
Hwang
,
T. W.
,
Evansa
,
C. J.
, and
Malkinb
,
S.
,
1999
, “
Size Effect for Specific Energy in Grinding of Silicon Nitride
,”
Wear
,
225–229
(
2
), pp.
862
867
.10.1016/S0043-1648(98)00406-2
26.
Zhong
,
Z. W.
,
2003
, “
Ductile or Partial Ductile Mode Machining of Brittle Materials
,”
Int. J. Adv. Manuf. Technol.
,
21
(
8
), pp.
579
585
.10.1007/s00170-002-1364-5
27.
Xu
,
H. H. K.
,
Padture
,
N. P.
, and
Jahanmir
,
S.
,
1995
, “
Effect of Microstructure on Material-Removal Mechanism and Damage Tolerance in Abrasive Machining of Silicon Carbide
,”
J. Am. Ceram. Soc.
,
78
(
9
), pp.
2443
2448
.10.1111/j.1151-2916.1995.tb08683.x
28.
Xie
,
Z.-H.
,
Moon
,
R. J.
,
Hoffman
,
M.
,
Munroe
,
P.
, and
Cheng
,
Y.-B.
,
2003
, “
Role of Microstructure in the Grinding and Polishing of α-Sialon Ceramics
,”
J. Eur. Ceram. Soc.
,
23
(
13
), pp.
2351
2360
.10.1016/S0955-2219(03)00046-3
29.
Marshall
,
D. E. B.
,
Lawn
,
B. R.
, and
Cook
,
R. F.
,
1987
, “
Microstructural Effects on Grinding of Alumina and Glass-Ceramics
,”
J. Am. Ceram. Soc.
,
70
(
6
), pp.
139
140
.10.1111/j.1151-2916.1987.tb05672.x
30.
Cho
,
S. J.
,
Hockey
,
B. J.
,
Lawn
,
B. R.
, and
Bennison
,
S. J.
,
1989
, “
Grain-Size and R-Curve Effects in the Abrasive Wear of Alumina
,”
J. Am. Ceram. Soc.
,
72
(
7
), pp.
1249
1252
.10.1111/j.1151-2916.1989.tb09718.x
31.
Desa
,
O.
, and
Bahadur
,
S.
,
1999
, “
Material Removal and Subsurface Damage Studies in Dry and Lubricated Single-Point Scratch Tests on Alumina and Silicon Nitride
,”
Wear
,
225–229
, pp.
1264
1275
.10.1016/S0043-1648(99)00048-4
32.
Zhang
,
B.
,
Zheng
,
X. L.
,
Tokura
,
H.
, and
Yoshikawa
,
M.
,
2003
, “
Grinding Induced Damage in Ceramics
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
353
364
.10.1016/S0924-0136(02)00952-4
33.
Xie
,
Z. H.
,
Moon
,
R. J.
,
Hoffman
,
M.
,
Munroe
,
P.
, and
Cheng
,
Y. B.
,
2003
, “
Role of Microstructure in the Grinding and Polishing of α-sialon Ceramics
,”
J Eur. Ceram. Soc.
,
23
(
13
), pp.
2351
2360
.10.1016/S0955-2219(03)00046-3
34.
Malkin
,
S.
, and
Hwang
,
T. W.
,
1996
, “
Grinding Mechanisms for Ceramics
,”
Ann. CIRP
,
45
(
2
), pp.
569
580
.10.1016/S0007-8506(07)60511-3
35.
Cheng
,
X.
,
Wei
,
X. T.
,
Yang
,
X. H.
, and
Guo1
,
Y. B.
,
2014
, “
Unified Criterion for Brittle–Ductile Transition in Mechanical Microcutting of Brittle Materials
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051013
.10.1115/1.4027996
36.
Tanovic
,
L. J.
,
Bojanic
,
P.
,
Puzovic
,
R.
, and
Klimenko
,
S.
,
2009
, “
Experimental Investigation of Microcutting Mechanisms in Marble Grinding
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
064507
.10.1115/1.4000619
You do not currently have access to this content.