This paper presents the development and modeling a high-resolution electrohydrodynamic-jet (EHD-jet) printing process using phase-change ink (i.e., wax), which is capable of producing sub-10 μm footprints (sub-10 fL in volume) for super-resolution additive manufacturing. In this study, we successfully apply EHD-jet printing for phase-change ink (wax), which is widely used as modeling and supporting material for additive manufacturing, to achieve micron-scale features. The resolution for single droplet on substrate is around 5 μm with the thickness in the range of 1–2 μm, which provides great potential in both high-resolution 3D printing and 2D drop-on-demand microfabrication. The droplet formation in EHD printing is modeled by finite element analysis (FEA). Two important forces in EHD printing, electrostatic force and surface tension force, are modeled separately by FEA. The droplet size is obtained by balancing the electrostatic force and surface tension of the pending droplets around meniscus apex. Furthermore, to predict the droplet dimension at different process conditions, a dimensionless scaling law is identified to describe the relationship between dimensionless droplet diameter and modified nondimensional electrical bond number. Finally, the droplets in-flight velocity and impact characteristics (e.g., Reynolds number and Weber number) are modeled using the results from FEA analysis.

References

1.
Ian
,
G.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2009
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
2.
Kruth
,
J.-P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
525
540
.10.1016/S0007-8506(07)63240-5
3.
Melchels
,
F. P. W.
,
Domingos
,
M. A. N.
,
Klein
,
T. J.
,
Malda
,
J.
,
Bartolo
,
P. J.
, and
Hutmacher
,
D. W.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.10.1016/j.progpolymsci.2011.11.007
4.
Beaman
,
J.
,
Marcus
,
H. L.
,
Bourell
,
D. L.
,
Barlow
,
J. W.
,
Crawford
,
R. H.
, and
McAlea
,
K. P.
, Solid Freeform Fabrication: A New Direction in Manufacturing,
Kluwer Academic Publishers
,
London, UK
.10.1007/978-1-4615-6327-3
5.
Hutmacher
,
D. W.
,
Sittinger
,
M.
, and
Risbud
,
M. V.
,
2004
, “
Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems
,”
Trends Biotechnol.
,
22
(
7
), pp.
354
362
.10.1016/j.tibtech.2004.05.005
6.
Tan
,
J.
, and
Saltzman
,
W. M.
,
2002
, “
Topographical Control of Human Neutrophil Motility on Micropatterned Materials With Various Surface Chemistry
,”
Biomaterials
,
23
(
15
), pp.
3215
3225
.10.1016/S0142-9612(02)00074-1
7.
Wang
,
K.
,
Cai
,
L.
,
Zhang
,
L.
,
Dong
,
J.
, and
Wang
,
S.
,
2012
, “
Biodegradable Photo-Crosslinked Polymer Substrates With Concentric Microgrooves for Regulating MC3T3-E1 Cell Behavior
,”
Adv. Healthcare Mater.
,
1
(
3
), pp.
292
301
.10.1002/adhm.201200030
8.
Cloupeau
,
M.
, and
Prunet-Foch
,
B.
,
1994
, “
Electrohydrodynamic Spraying Functioning Modes: A Critical Review
,”
J. Aerosol Sci.
,
25
(
6
), pp.
1021
1036
.10.1016/0021-8502(94)90199-6
9.
Jayasinghe
,
S. N.
,
Qureshi
,
A. N.
, and
Eagles
,
P. A. M.
,
2005
, “
Electrohydrodynamic Jet Processing: An Advanced Electric-Field-Driven Jetting Phenomenon for Processing Living Cells
,”
Small
,
2
(
2
), pp.
216
219
.10.1002/smll.200500291
10.
Enayati
,
M.
,
Ahmad
,
Z.
,
Stride
,
E.
, and
Edirisinghe
,
M.
,
2010
, “
One-Step Electrohydrodynamic Production of Drug-Loaded Micro- and Nanoparticles
,”
J. R. Soc. Interface
,
7
(
45
), pp.
667
675
.10.1098/rsif.2009.0348
11.
Kim
,
J.-S.
,
Chung
,
W.-S.
,
Kim
,
K.
,
Kim
,
D. Y.
,
Paeng
,
K.-J.
,
Jo
,
S. M.
, and
Jang
,
S.-Y.
,
2010
, “
Performance Optimization of Polymer Solar Cells Using Electrostatically Sprayed Photoactive Layers
,”
Adv. Funct. Mater.
,
20
(
20
), pp.
3538
3546
.10.1002/adfm.201000433
12.
Sill
,
T. J.
, and
von Recum
,
H. A.
,
2008
, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
,
29
(
13
), pp.
1989
2006
.10.1016/j.biomaterials.2008.01.011
13.
Hansen
,
N. S.
,
Cho
,
D.
, and
Joo
,
Y. L.
,
2012
, “
Metal Nanofibers With Highly Tunable Electrical and Magnetic Properties Via Highly Loaded Water-Based Electrospinning
,”
Small
,
8
(
10
), pp.
1510
1514
.10.1002/smll.201102087
14.
Gries
,
K.
,
Vieker
,
H.
,
Gölzhäuser
,
A.
,
Agarwal
,
S.
, and
Greiner
,
A.
,
2012
, “
Preparation of Continuous Gold Nanowires by Electrospinning of High-Concentration Aqueous Dispersions of Gold Nanoparticles
,”
Small
,
8
(
9
). pp.
1436
1441
.10.1002/smll.201102308
15.
Lee
,
J.
,
Lee
,
S. Y.
,
Jang
,
J.
,
Jeong
,
Y. H.
, and
Cho
,
D.-W.
,
2012
Fabrication of Patterned Nanofibrous Mats Using Direct-Write Electrospinning
,”
Langmuir
,
28
(
18
), pp.
7267
7275
.10.1021/la3009249
16.
Dalton
,
P. D.
,
Joergensen
,
N. T.
,
Groll
,
J.
, and
Moeller
,
M.
,
2008
, “
Patterned Melt Electrospun Substrates for Tissue Engineering
,”
Biomed. Mater.
,
3
(
3
), p.
034109
.10.1088/1748-6041/3/3/034109
17.
Sun
,
D.
,
Chang
,
C.
,
Li
,
S.
, and
Lin
,
L.
,
2006
, “
Near-Field Electrospinning
,”
Nano Lett.
,
6
(
4
), pp.
839
842
.10.1021/nl0602701
18.
Wei
,
C.
, and
Dong
,
J.
,
2013
, “
Direct Fabrication of High-Resolution Three-Dimensional Polymeric Scaffolds Using Electrohydrodynamic Hot Jet Plotting
,”
J. Micromech. Microeng.
,
23
(
2
), p.
025017
.10.1088/0960-1317/23/2/025017
19.
Wei
,
C.
, and
Dong
,
J.
,
2013
, “
Hybrid Hierarchical Fabrication of Three-Dimensional Scaffolds
,”
J. Manuf. Processes
,
16
(
2
), pp.
257
263
.10.1016/j.jmapro.2013.10.003
20.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
,
Georgiadis
,
J. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.10.1038/nmat1974
21.
Wei
,
C.
,
Qin
,
H.
,
Ramírez-Iglesias
,
N. A.
,
Chiu
,
C.-P.
,
Lee
,
Y.-s.
, and
Dong
,
J.
,
2014
, “
High-Resolution AC-Pulse Modulated Electrohydrodynamic Jet Printing on Highly Insulating Substrates
,”
J. Micromech. Microeng.
,
24
(
4
), p.
045010
.10.1088/0960-1317/24/4/045010
22.
Kang
,
D. K.
,
Lee
,
M. W.
,
Kim
,
H. Y.
,
James
,
S. C.
, and
Yoon
,
S. S.
,
2011
, “
Electrohydrodynamic Pulsed-Inkjet Characteristics of Various Inks Containing Aluminum Particles
,”
J. Aerosol Sci.
,
42
(
10
), pp.
621
630
.10.1016/j.jaerosci.2011.06.009
23.
Xu
,
L.
,
Wang
,
X.
,
Lei
,
T.
,
Sun
,
D.
, and
Lin
,
L.
,
2011
, “
Electrohydrodynamic Deposition of Polymeric Droplets Under Low-Frequency Pulsation
,”
Langmuir
27
(
10
), pp.
6541
6548
.10.1021/la201107j
24.
Mishra
,
S.
,
Barton
,
K. L.
,
Alleyne
,
A. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2010
, “
High-Speed and Drop-On-Demand Printing With a Pulsed Electrohydrodynamic Jet
,”
J. Micromech. Microeng.
,
20
(
9
), p.
095026
.10.1088/0960-1317/20/9/095026
25.
Poellmann
,
M. J.
,
Barton
,
K. L.
,
Mishra
,
S.
, and
Johnson
,
A. J. W.
,
2011
, “
Patterned Hydrogel Substrates for Cell Culture With Electrohydrodynamic Jet Printing
,”
Macromol. Biosci.
,
11
(
9
), pp.
1164
1168
.10.1002/mabi.201100004
26.
Pikul
,
J. H.
,
Graf
,
P.
,
Mishra
,
S.
,
Barton
,
K.
,
Kim
,
Y.-K.
,
Rogers
,
J. A.
,
Alleyne
,
A.
,
Ferreira
,
P. M.
, and
King
,
W. P.
,
2011
, “
High Precision Electrohydrodynamic Printing of Polymer Onto Microcantilever Sensors
,”
IEEE J. Sens.
,
11
(
10
), pp.
2246
2253
.10.1109/JSEN.2011.2127472
27.
Fathi
,
S.
, and
Dickens
,
P.
,
2012
, “
Nozzle Wetting and Instabilities During Droplet Formation of Molten Nylon Materials in an Inkjet Printhead
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041008
.10.1115/1.4006971
28.
Galliker
,
P.
,
Schneider
,
J.
,
Eghlidi
,
H.
,
Kress
,
S.
,
Sandoghdar
,
V.
, and
Poulikakos
,
D.
,
2012
, “
Direct Printing of Nanostructures by Electrostatic Autofocussing of Ink Nanodroplets
,”
Nat. Commun.
,
3
, p. 890.10.1038/ncomms1891
29.
Collins
,
R. T.
,
Jones
,
J. J.
,
Harris
,
M. T.
, and
Basaran
,
O. A.
,
2008
, “
Electrohydrodynamic Tip Streaming and Emission of Charged Drops From Liquid Cones
,”
Nat. Phys.
,
4
(
2
), pp.
149
154
.10.1038/nphys807
30.
Collins
,
R. T.
,
Sambath
,
K.
,
Harris
,
M. T.
, and
Basaran
,
O. A.
,
2013
, “
Universal Scaling Laws for the Disintegration of Electrified Drops
,”
Proc. Natl. Acad. Sci.
,
110
(
13
), pp.
4905
4910
.10.1073/pnas.1213708110
31.
López-Herrera
,
J. M.
,
Popinet
,
S.
, and
Herrada
,
M. A.
,
2011
, “
A Charge-Conservative Approach for Simulating Electrohydrodynamic Two-Phase Flows Using Volume-of-Fluid
,”
J. Comput. Phys.
,
230
(
5
), pp.
1939
1955
.10.1016/j.jcp.2010.11.042
32.
Forbes
,
T. P.
,
Degertekin
,
F. L.
, and
Fedorov
,
A. G.
,
2010
, “
Electrohydrodynamics of Charge Separation in Droplet-Based Ion Sources With Time-Varying Electrical and Mechanical Actuation
,”
J. Am. Soc. Mass Spectrom.
,
21
(
4
), pp.
501
510
.10.1016/j.jasms.2009.12.022
33.
Kim
,
H.
,
Song
,
J.
,
Chung
,
J.
, and
Hong
,
D.
,
2010
, “
Onset Condition of Pulsating Cone-Jet Mode of Electrohydrodynamic Jetting for Plane, Hole, and Pin Type Electrodes
,”
J. Appl. Phys.
,
108
(
10
), p.
102804
.10.1063/1.3511685
34.
Lee
,
M. W.
,
Kim
,
N. Y.
, and
Yoon
,
S. S.
,
2013
, “
On Pinchoff Behavior of Electrified Droplets
,”
J. Aerosol Sci.
,
57
, pp.
114
124
.10.1016/j.jaerosci.2012.09.003
35.
Han
,
Y.
,
Wei
,
C.
, and
Dong
,
J.
,
2014
, “
Super-Resolution Electrohydrodynamic (EHD) 3D Printing of Micro-Structures Using Phase-Change Inks
,”
Manuf. Lett.
,
2
(
4
), pp.
96
99
.10.1016/j.mfglet.2014.07.005
You do not currently have access to this content.