For a fully hardened steel material, hole surface microstructures are often subject to microstructural transition because of the intense thermomechanical loading. A white layer can be formed on the surface of a drilled hole of hardened carbon steels, which results from two mechanisms: thermally driven phase transformation and mechanical grain refinement due to severe plastic deformation. In this study, a multistep numerical analysis is conducted to investigate the potential mechanism of surface microstructure alterations in hard drilling. First, three-dimensional (3D) finite element (FE) simulations are performed using a relative coarse mesh with advantedge for hard drilling of AISI 1060 steel to achieve the steady-state solution for thermal and deformation fields. Defining the initial condition of the cutting zone using the 3D simulation results, a multiphysics model is then implemented in two-dimensional (2D) coupled Eulerian–Lagrangian (CEL) FE analysis in abaqus to model both phase transformation and grain refinement at a fine mesh to comprehend the surface microstructure alteration. Experimental results are used to demonstrate the capability of this multiphysics model to predict critical surface microstructural attributes.

References

1.
Griffiths
,
B. J.
, and
Group
,
S.
,
1987
, “
Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes
,”
J. Tribol.
,
109
(
86
), pp.
525
530
.10.1115/1.3261495
2.
Jawahir
, I
. S.
,
Brinksmeier
,
E.
,
M'Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann. - Manuf. Technol.
,
60
(
2
), pp.
603
626
.10.1016/j.cirp.2011.05.002
3.
Ramesh
,
A.
,
Melkote
,
S. N.
,
Allard
,
L. F.
,
Riester
,
L.
, and
Watkins
,
T. R.
,
2005
, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng. A
,
390
, pp.
88
97
.10.1016/j.msea.2004.08.052
4.
Todaka
,
Y.
,
Umemoto
,
M.
,
Li
,
J.
, and
Tsuchiya
,
K.
,
2005
, “
Nanocrystallization of Drill Hole Surface by High Speed Drilling
,”
J. Metastable Nanocryst. Mater.
,
24-25
, pp.
601
604
.10.4028/www.scientific.net/JMNM.24-25.601
5.
Li
,
J. G.
,
Umemoto
,
M.
,
Todaka
,
Y.
, and
Tsuchiya
,
K.
,
2007
, “
A Microstructural Investigation of the Surface of a Drilled Hole in Carbon Steels
,”
Acta Mater.
,
55
, pp.
1397
1406
.10.1016/j.actamat.2006.09.043
6.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3-4
), pp.
402
414
.10.1016/j.ijmachtools.2007.09.007
7.
Shi
,
J.
, and
Liu
,
C. R.
,
2006
, “
On Predicting Chip Morphology and Phase Transformation in Hard Machining
,”
Int. J. Adv. Manuf. Technol.
,
27
(
7–8
), pp.
645
654
.10.1007/s00170-004-2242-0
8.
Umbrello
,
D.
,
Jayal
,
A. D.
,
Caruso
,
S.
,
Dillon
,
O. W.
, and
Jawahir
, I
. S.
,
2010
, “
Modeling of White and Dark Layer Formation in Hard Machining of AISI 52100 Bearing Steel
,”
Mach. Sci. Technol.
,
14
, pp.
128
147
.10.1080/10910340903586525
9.
Ding
,
H.
, and
Shin
,
Y.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(4), p. 041003.10.1115/1.4027207
10.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
.10.1016/j.commatsci.2011.05.020
11.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Predictive Modeling of Grain Refinement During Multi-Pass Cold Rolling
,”
J. Mater. Process. Technol.
,
212
(
5
), pp.
1003
1013
.10.1016/j.jmatprotec.2011.12.005
12.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
Dislocation Density-Based Modeling of Subsurface Grain Refinement With Laser-Induced Shock Compression
,”
Comput. Mater. Sci.
,
53
, pp.
79
88
.10.1016/j.commatsci.2011.08.038
13.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
(5),
p
. 51014.10.1115/1.4007464
14.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.10.1016/j.jmatprotec.2012.12.016
15.
Bono
,
M.
, and
Ni
,
J.
,
2001
, “
The Effects of Thermal Distortions on the Diameter and Cylindricity of Dry Drilled Holes
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
2261
2270
.10.1016/S0890-6955(01)00047-5
16.
Kalidas
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2002
, “
Influence of Thermal Effects on Hole Quality in Dry Drilling, Part 1: A Thermal Model of Workpiece Temperatures
,”
ASME J. Manuf. Sci. Eng.
,
124
(2), pp.
258
266
.10.1115/1.1455645
17.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2012
, “
An Inverse Heat Transfer Method for Determining Workpiece Temperature in Minimum Quantity Lubrication Deep Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
134
, p.
021006
.10.1115/1.4005794
18.
Strenkowski
,
J. S.
,
Hsieh
,
C. C.
, and
Shih
,
A. J.
,
2004
, “
An Analytical Finite Element Technique for Predicting Thrust Force and Torque in Drilling
,”
Int. J. Mach. Tools Manuf.
,
44
, pp.
1413
1421
.10.1016/j.ijmachtools.2004.01.005
19.
Stephenson
,
D. A.
, and
Wu
,
S. M.
,
1988
, “
Computer Models for the Mechanics of Three-Dimensional Cutting Processes—Part II. Results for Oblique End Turning and Drilling
,”
J. Eng. Ind.
,
110
, pp.
38
43
.10.1115/1.3187840
20.
Burns
,
T. J.
,
Mates
,
S. P.
,
Rhorer
,
R. L.
,
Whitenton
,
E. P.
, and
Basak
,
D.
,
2011
, “
Dynamic Properties for Modeling and Simulation of Machining: Effect of Pearlite to Austenite Phase Transition on Flow Stress in AISI 1075 Steel
,”
Mach. Sci. Technol.
,
15
, pp.
1
20
.10.1080/10910344.2011.557943
21.
Chandler
,
H.
,
1995
,
Heat Treater's Guide—Practices and Procedures for Irons and Steels
, 2nd ed., Novelty, OH.
22.
Bailey
,
N. S.
,
Tan
,
W.
, and
Shin
,
Y. C.
,
2009
, “
Predictive Modeling and Experimental Results for Residual Stresses in Laser Hardening of AISI 4140 Steel by a High Power Diode Laser
,”
Surf. Coat. Technol.
,
203
, pp.
2003
2012
.10.1016/j.surfcoat.2009.01.039
23.
Lakhkar
,
R. S.
,
Shin
,
Y. C.
, and
Krane
,
M. J. M.
,
2008
, “
Predictive Modeling of Multi-Track Laser Hardening of AISI 4140 Steel
,”
Mater. Sci. Eng. A
,
480
(
1–2
), pp.
209
217
.10.1016/j.msea.2007.07.054
24.
Lee
,
C.-H.
, and
Chang
,
K.-H.
,
2011
, “
Prediction of Residual Stresses in High Strength Carbon Steel Pipe Weld Considering Solid-State Phase Transformation Effects
,”
Comput. Struct.
,
89
, pp.
256
265
.10.1016/j.compstruc.2010.10.005
25.
Simsir
,
C.
, and
Gür
,
C. H.
,
2008
, “
A FEM Based Framework for Simulation of Thermal Treatments: Application to Steel Quenching
,”
Comput. Mater. Sci.
,
44
, pp.
588
600
.10.1016/j.commatsci.2008.04.021
26.
Yaghi
,
A. H.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2008
, “
Finite Element Simulation of Welding and Residual Stresses in a P91 Steel Pipe Incorporating Solid-State Phase Transformation and Post-Weld Heat Treatment
,”
J. Strain Analysis Eng. Des.
,
43
, pp.
275
293
.10.1243/03093247JSA372
27.
Caccialupi
,
A.
,
2003
, “
Systems Development for High Temperature, High Strain Rate Material Testing of Hardened Steels for Plasticity Behavior Modeling
,” M.S. thesis, Department of Mechanical Engineering, Geogia Insititute of Technology.
28.
Iwamoto
,
T.
,
Tsuta
,
T.
, and
Tomita
,
Y.
,
1998
, “
Investigation on Deformation Mode Dependence of Strain-Induced Martensitic Transformation in Trip Steels and Modeling of Transformation Kinetics
,”
Int. J. Mech. Sci.
,
40
, pp.
173
182
.10.1016/S0020-7403(97)00047-7
29.
Nath
,
A. K.
,
Gupta
,
A.
, and
Benny
,
F.
,
2012
, “
Theoretical and Experimental Study on Laser Surface Hardening by Repetitive Laser Pulses
,”
Surf. Coat. Technol.
,
206
, pp.
2602
2615
.10.1016/j.surfcoat.2011.11.019
You do not currently have access to this content.