A novel fabrication process of small pore-size nickel foams has been developed using electroless plating of solid-state foamed immiscible polymer blends. Ethylene acrylic acid (EAA) and polystyrene (PS) were melt-blended with extrusion to obtain a dual phase cocontinuous morphology. Gas saturation and foaming studies were performed to determine appropriate process conditions for foaming of the two-phase material. Open-celled polymer templates were obtained by extracting the PS phase with dichloromethane (DCM). The templates were subsequently used for nickel foam plating in ethanol-based electroless plating solutions. Nickel foams with pore sizes on the level of tens of micrometers and porosity above 90% were fabricated. It was found that gas concentration and foaming temperature were major process variables significantly affecting the foam porosity. Foaming allowed faster PS extraction and higher porosity of the nickel plating templates. Because of the small pore size, ethanol-based solutions need to be used to ensure the infiltration of plating solutions. The developed process is a bulk method and can be used for large-scale fabrication of small pore-size nickel foams with high porosity.

References

1.
Cognet
,
P.
,
Berlan
,
J.
,
Lacoste
,
G.
,
Fabre
,
P. L.
, and
Jud
,
J. M.
,
1996
, “
Application of Metallic Foams in an Electrochemical Pulsed Flow Reactor Part II: Oxidation of Benzyl Alcohol
,”
J. Appl. Electrochem.
,
26
(
6
), pp.
631
637
.10.1007/BF00253462
2.
Hsueh
,
H. Y.
,
Huang
,
Y. C.
,
Ho
,
R. M.
,
Lai
,
C. H.
,
Makida
,
T.
, and
Hasegawa
,
H.
,
2011
, “
Nanoporous Gyroid Nickel From Block Copolymer Templates via Electroless Plating
,”
Adv. Mater.
,
23
(
27
), pp.
3041
3046
.10.1002/adma.201100883
3.
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1993
, “
Application of Metallic Foams in Electrochemical Reactors of Filter-Press Type Part I: Flow Characterization
,”
J. Appl. Electrochem.
,
23
(
10
), pp.
1045
1050
.10.1007/BF00266127
4.
Zhao
,
P.
,
Zhang
,
H.
,
Zhou
,
H.
, and
Yi
,
B.
,
2005
, “
Nickel Foam and Carbon Felt Applications for Sodium Polysulfide/Bromine Redox Flow Battery Electrodes
,”
Electrochim. Acta
,
51
(
6
), pp.
1091
1098
.10.1016/j.electacta.2005.06.008
5.
Strano
,
M.
,
2011
, “
A New FEM Approach for Simulation of Metal Foam Filled Tubes
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061003
.10.1115/1.4005354
6.
Cao
,
X.
,
Shi
,
Y.
,
Shi
,
W.
,
Lu
,
G.
,
Huang
,
X.
,
Yan
,
Q.
,
Zhang
,
Q.
, and
Zhang
,
H.
,
2011
, “
Preparation of Novel 3D Graphene Networks for Supercapacitor Applications
,”
Small
,
7
(
22
), pp.
3163
3168
.10.1002/smll.201100990
7.
Chen
,
Y.
,
Zhang
,
X.
,
Yu
,
P.
, and
Ma
,
Y.
,
2010
, “
Electrophoretic Deposition of Graphene Nanosheets on Nickel Foams for Electrochemical Capacitors
,”
J. Power Sources
,
195
(
9
), pp.
3031
3035
.10.1016/j.jpowsour.2009.11.057
8.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.10.1016/j.ijheatmasstransfer.2007.12.012
9.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.10.1016/j.ijheatmasstransfer.2005.12.012
10.
Apprill
,
J. M.
,
Poirier
,
D. R.
,
Maguire
,
M. C.
, and
Gutsch
,
T. C.
,
1998
, “
GASAR Porous Metals Process Control
,”
MRS Online Proc. Libr.
,
521
, pp.
291
296
.10.1557/PROC-521-291
11.
Bram
,
M.
,
Stiller
,
C.
,
Buchkremer
,
H. P.
,
Stöver
,
D.
, and
Baur
,
H.
,
2000
, “
High-Porosity Titanium, Stainless Steel, and Superalloy Parts
,”
Adv. Eng. Mater.
,
2
(
4
), pp.
196
199
.10.1002/(SICI)1527-2648(200004)2:4<196::AID-ADEM196>3.0.CO;2-K
12.
Yamada
,
Y.
,
Banno
,
T.
,
Li
,
Y.
, and
Wen
,
C. E.
2008
,
Anisotropic Mechanical Properties of Nickel Foams Fabricated by Powder Metallurgy
,
Trans Tech Publications Ltd.
, Zurich, Switzerland.
13.
Clancy
,
R. B.
,
Cochran
,
J. K.
, and
Sanders
,
T. H.
,
1994
, “
Fabrication and Properties of Hollow Sphere Nickel Foams
,”
MRS Online Proc. Libr.
,
372
, pp.
155
165
.10.1557/PROC-372-155
14.
Brown
,
I. J.
, and
Sotiropoulos
,
S.
,
2001
, “
Electroplating and Electroless Plating of Ni Through/Onto a Porous Polymer in a flow Cell
,”
J. Appl. Electrochem.
,
31
(
11
), pp.
1203
1217
.10.1023/A:1012751503628
15.
Wadley
,
H. N. G.
,
2001
,
Cellular Metals Manufacturing: An Overview of Stochastic and Periodic Concepts,” Cellular Metals and Metal Foaming Technology
,
Verlag-MIT
, Berlin, Germany.
16.
Eaves
,
D.
,
2004
,
Handbook of Polymer Foams
,
iSmithers Rapra Publishing
,
Shawbury, UK
.
17.
Badiche
,
Forest
,
S.
,
Guibert
,
T.
,
Bienvenu
,
Y.
,
Bartout
,
J.
,
Ienny
,
P.
,
Croset
,
M.
, and
Bernet
,
H.
,
2000
, “
Mechanical Properties and Non-Homogeneous Deformation of Open-Cell Nickel Foams: Application of the Mechanics of Cellular Solids and of Porous Materials
,”
Mater. Sci. Eng. A
,
289
(
1–2
), pp.
276
288
.10.1016/S0921-5093(00)00898-4
18.
Paserin
,
V.
,
Marcuson
,
S.
,
Shu
,
J.
, and
Wilkinson
,
D. S.
,
2004
, “
CVD Technique for Inco Nickel Foam Production
,”
Adv. Eng. Mater.
,
6
(
6
), pp.
454
459
.10.1002/adem.200405142
19.
Zhang
,
H.
,
Yu
,
X.
, and
Braun
,
P. V.
,
2011
, “
Three-Dimensional Bicontinuous Ultrafast-Charge and -Discharge Bulk Battery Electrodes
,”
Nat. Nanotechnol.
,
6
(
5
), pp.
277
281
.10.1038/nnano.2011.38
20.
Vukovic
,
I.
,
Punzhin
,
S.
,
Vukovic
,
Z.
,
Onck
,
P.
,
De Hosson
,
J. T. M.
,
ten Brinke
,
G.
, and
Loos
,
K.
,
2011
, “
Supramolecular Route to Well-Ordered Metal Nanofoams
,”
ACS Nano
,
5
(
8
), pp.
6339
6348
.10.1021/nn201421y
21.
Xiaoxi Wang
,
Wei Li
, and
Kumar
,
V.
,
2009
, “
Creating Open-Celled Solid-State Foams Using Ultrasound
,”
J. Cell. Plast.
,
45
(
4
), pp.
353
369
.10.1177/0021955X09104282
22.
Wang
,
H.
, and
Li
,
W.
,
2008
, “
Selective Ultrasonic Foaming of Polymer for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
021004
.10.1115/1.2823078
23.
Jordhamo
,
G. M.
,
Manson
,
J. A.
, and
Sperling
,
L. H.
,
1986
, “
Phase Continuity and Inversion in Polymer Blends and Simultaneous Interpenetrating Networks
,”
Polym. Eng. Sci.
,
26
(
8
), pp.
517
524
.10.1002/pen.760260802
24.
Zhou
,
C.
,
Vaccaro
,
N.
,
Sundarram
,
S. S.
, and
Li
,
W.
,
2012
, “
Fabrication and Characterization of Polyetherimide Nanofoams Using Supercritical CO2
,”
J. Cell. Plast.
,
48
(
3
), pp.
239
255
.10.1177/0021955X12437984
25.
Mallory
,
G. O.
, and
Hajdu
,
J. B.
,
1990
,
Electroless Plating Fundamentals and Applications
,
William Andrew
,
Orlando, FL
.
26.
Bulasara
,
V. K.
,
Uppaluri
,
R.
, and
Purkait
,
M. K.
,
2012
, “
Effect of Ultrasound on the Performance of Nickel Hydrazine Electroless Plating Baths
,”
Mater. Manuf. Process.
,
27
(
2
), pp.
201
206
.10.1080/10426914.2011.566663
27.
ASTM D792 - 08 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, 2012/2002/16/17:00:10, http://www.astm.org/Standards/D792.htm
28.
Zhu
,
Y.
,
Gao
,
C.
,
Guan
,
J.
, and
Shen
,
J.
,
2003
, “
Engineering Porous Polyurethane Scaffolds by Photografting Polymerization of Methacrylic Acid for Improved Endothelial Cell Compatibility
,”
J. Biomed. Mater. Res. Part A
,
67A
(
4
), pp.
1367
1373
.10.1002/jbm.a.20058
29.
Schlesinger
,
M.
, and
Paunovic
,
M.
,
2010
,
Modern Electroplating
,
Wiley
,
Hoboken, NJ
.
30.
Lappalainen
,
K.
,
Manninen
,
M.
,
Alopaeus
,
V.
,
Aittamaa
,
J.
, and
Dodds
,
J.
,
2008
, “
An Analytical Model for Capillary Pressure–Saturation Relation for Gas–Liquid System in a Packed-Bed of Spherical Particles
,”
Transp. Porous Media
,
77
(
1
), pp.
17
40
.10.1007/s11242-008-9259-z
You do not currently have access to this content.