This paper presents the modeling and analysis of the pressure distribution and lifting force generated by a Bernoulli gripper when handling flexible substrates such as thin silicon wafers. A Bernoulli gripper is essentially a radial airflow nozzle used to handle large and small, rigid and nonrigid materials by creating a low pressure region or vacuum between the gripper and material. Previous studies on Bernoulli gripping have analyzed the pressure distribution and lifting force for handling thick substrates that undergo negligible deformation. Since the lifting force produced by the gripper is a function of the gap between the handled object and the gripper, any deformation of the substrate will influence the gap and consequently the pressure distribution and lifting force. In this paper, the effect of substrate (thin silicon wafer) flexibility on the equilibrium wafer deformation, radial pressure distribution and lifting force is modeled and analyzed using a combination of computational fluid dynamics (CFD) modeling and finite element analysis. The equilibrium wafer deformation for different air flow rates is compared with experimental data and is shown to be in good agreement. In addition, the effect of wafer deformation on the pressure and lifting force are shown to be significant at higher volumetric airflow rates. The modeling and analysis approach presented in this paper is particularly useful for evaluating the effect of gripper variables on the handling stresses generated in thin silicon wafers and for gripper design optimization.

References

1.
Teschler
,
L. E.
, 2008, “
Next Big Challenge for PV Makers: Wafer Handling
,”
Mach. Des.
, pp.
1
7
.
2.
Binder
,
A.
, and
Kroupa
,
G.
, 2003, “
Novel Technology for Handling Very Thin Wafers
,”
Solid State Technol.
,
46
(
10
), pp.
64
68
.
3.
Benjamin
,
J. M.
, and
Brick Town
,
N. J.
, 1969, “
Pneumatic Probe for Handling Flat Objects
,” U.S. Patent No. 3,425,736.
4.
Mammel
,
W. K.
, 1969, “
Pickup Device for Supporting Workpieces on a Layer of Fluid
,” U.S. Patent No. 3,431,009.
5.
Paivanas
,
J. A.
, and
Hassan
,
J. K.
, 1979, “
Air Film System for Handling Semiconductor Wafers
,”
IBM J. Res. Dev.
,
23
(
4
), pp.
361
375
.
6.
Safabakhsh
,
A. R.
, 1992, “
Non-Contact Pick-up Head
,” U.S. Patent No. 5,169,196.
7.
Kiesewetter
,
L.
, and
Grutzeck
,
H.
, 2002, “
Downscaling of Grippers for Micro Assembly
,”
Microsyst. Technol.
,
8
(
1
), pp.
27
31
.
8.
Erzincanli
,
F.
, and
Sharp
,
J. M.
, 1997, “
Development of a Non-Contact End Effector for Robotic Handling of Non-Rigid Materials
,”
Robotica
,
15
(
3
), pp.
331
335
.
9.
Erzincanli
,
F.
,
Sharp
,
J. M.
, and
Erhal
,
S.
, 1998, “
Design and Operational Considerations of a Non-Contact Robotic Handling System for Non-Rigid Materials
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
), pp.
353
361
.
10.
Ozcelik
,
B.
, and
Erzincanli
,
F.
, 2002, “
A Non-Contact End-Effector for the Handling of Garments
,”
Robotica
,
20
(
4
), pp.
447
450
.
11.
Ozcelik
,
B.
,
Erzincanli
,
F.
, and
Findik
,
F.
, 2003, “
Evaluation of Handling Results of Various Materials Using a Non-Contact End-Effector
,”
Ind. Robot
,
30
(
4
), pp.
363
369
.
12.
Ozcelik
,
B.
, and
Erzincanli
,
F.
, 2005, “
Examination of the Movement of a Woven Fabric in the Horizontal Direction Using a Non-Contact End-Effector
,”
Int. J. Adv. Manuf. Technol.
,
25
(
5–6
), pp.
527
532
.
13.
Paivanas
,
J. A.
, and
Hassan
,
J. K.
, 1981, “
Attraction Force Characteristics Engendered by Bounded, Radially Diverging Air Flow
,”
IBM J. Res. Dev.
,
25
(
2–3
), pp.
176
186
.
14.
Davis
,
S.
,
Gray
,
J. O.
, and
Caldwell
,
D. G.
, 2008, “
An End Effect Based on the Bernoulli Principle for Handling Sliced Fruit and Vegetables
,”
Rob. Comput.-Integr. Manuf.
,
24
, pp.
249
257
.
15.
Brun
,
X. F.
, and
Melkote
,
S. N.
, 2009, “
Modeling and Prediction of the Flow, Pressure and Holding Force Generated by a Bernoulli Handling Device
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031018
.
16.
Blazek
,
J.
, 2005,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier
,
Amsterdam
.
17.
Fluent, Inc., 2005, FLUENT, Version 6.2, “User’s Guide”.
18.
Möller
,
H. J.
,
Funke
,
C.
,
Rinio
,
M.
, and
Scholz
,
S.
, 2005, “
Multicrystalline Silicon for Solar Cells
,”
Thin Solid Films
,
487
(
1–2
), pp.
179
187
.
19.
Brun
,
X. F.
, 2008, “
Analysis and Optimization of Handling Stresses in Thin Multicrystalline Silicon Wafers
,” Ph.D. thesis, Mechanical Engineering, Georgia Tech, Atlanta, GA.
20.
Funke
,
C.
,
Kullig
,
E.
,
Kuna
,
M.
, and
Möller
,
H. J.
, 2004, “
Biaxial Fracture Test of Silicon Wafers
,”
Adv. Eng. Mater.
,
6
(
7
), pp.
594
598
.
21.
Ravi
,
K. V.
, 1977, “
The Growth of EFG Silicon Ribbons
,”
J. Cryst. Growth
,
39
, pp.
1
16
.
22.
Wortman
,
J. J.
, and
Evans
,
R. A.
, 1965, “
Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
(
1
), pp.
153
156
.
23.
Brun
,
X.
, and
Melkote
,
S. N.
, 2009, “
Analysis of Stresses and Breakage of Crystalline Silicon Wafers During Handling and Transport
,”
Sol. Energy Mater. Sol. Cells
,
93
, pp.
1238
1247
.
You do not currently have access to this content.