Deformable coated materials hold promises for numerous new technologies. In this research, extrusion of polymer coated metal rods was investigated. Analytical models based on upper bound method were developed to evaluate axisymmetric conical die extrusion of precoated materials. The rigid-plastic boundaries were optimized to obtain minimum extrusion power and to predict coating failure. From the models, the critical extrusion die angle can be derived. The analytical results agreed well with the results from the finite element simulation. The developed models can be used for extrusion die design and process analysis and can lead to lower cost and environmental friendly manufacturing technologies.

1.
Kudo
,
H.
, 1960, “
Some Analytical and Experimental Studies of Axisymmetric Cold Forging and Extrusion
,”
Int. J. Mech. Sci.
0020-7403,
2
, pp.
102
127
.
2.
Avitzur
,
B.
, 1966, “
Analysis of Metal Extrusion
,”
ASME J. Eng. Ind.
0022-0817,
87
, pp.
57
70
.
3.
Kobayashi
,
S.
, and
Thomsen
,
E. G.
, 1965, “
Upper- and Lower-Bound Solutions to Axisymmetric Compression and Extrusion Problems
,”
Int. J. Mech. Sci.
,
7
, pp.
127
143
. 0020-7403
4.
Chen
,
C. T.
, and
Ling
,
F. F.
, 1968, “
Upper-Bound Solution to Axisymmetric Extrusion Problem
,”
Int. J. Mech. Sci.
0020-7403,
10
, pp.
863
879
.
5.
Avitzur
,
B.
, 1968, “
Analysis of Central Bursting in Extrusion and Wire Drawing
,”
ASME J. Eng. Ind.
,
90
, pp.
79
91
. 0022-0817
6.
Zimmerman
,
Z.
, and
Avitzur
,
B.
, 1970, “
Metal Flow Through Conical Converging Dies—A Lower Upper Bound Approach Using Generalized Boundaries of the Plastic Zone
,”
ASME J. Eng. Ind.
,
92
, pp.
119
129
. 0022-0817
7.
Nagpal
,
V.
, 1974, “
General Kinematically Admissible Velocity Fields for Some Axisymmetric Metal Forming Problems
,”
ASME J. Eng. Ind.
,
96
, pp.
1197
1201
. 0022-0817
8.
Yang
,
D. Y.
,
Han
,
C. H.
, and
Lee
,
B. C.
, 1985, “
The Use of Generalized Deformation Boundaries for the Analysis of Axisymmetric Extrusion Through Curved Dies
,”
Int. J. Mech. Sci.
0020-7403,
27
(
10
), pp.
653
663
.
9.
Yang
,
D. Y.
, and
Han
,
C. H.
, 1987, “
A New Formulation of Generalized Velocity Field for Axisymmetric Forward Extrusion Through Arbitrarily Curved Dies
,”
ASME J. Eng. Ind.
,
109
, pp.
161
168
. 0022-0817
10.
Osakada
,
K.
,
Limb
,
M.
, and
Mellor
,
P. B.
, 1973, “
Hydrostatic Extrusion of Composite Rods With Hard Cores
,”
Int. J. Mech. Sci.
0020-7403,
15
, pp.
291
307
.
11.
Avitzur
,
B.
,
Wu
,
R.
,
Talbert
,
S.
, and
Chou
,
Y. T.
, 1982, “
Criterion for the Prevention of Core Fracture During Extrusion of Bimetal Rods
,”
ASME J. Eng. Ind.
,
104
, pp.
293
304
. 0022-0817
12.
Avitzur
,
B.
,
Wu
,
R.
,
Talbert
,
S.
, and
Chou
,
Y. T.
, 1986, “
Analysis of Core Fracture in Drawing of Bimetal Rods and Wires
,”
ASME J. Eng. Ind.
,
108
, pp.
133
140
. 0022-0817
13.
Yang
,
D. Y.
,
Kim
,
Y. G.
, and
Lee
,
C. M.
, 1991, “
An Upper Bound Solution for Extrusion of Composite Rods Through Curved Dies
,”
Int. J. Mach. Tools Manuf.
,
31
(
4
), pp.
565
575
. 0890-6955
14.
Hwang
,
Y. -M.
, and
Hwang
,
T. -F.
, 2002, “
An Investigation Into the Plastic Deformation Behavior Within a Conical Die During Composite Rod Extrusion
,”
J. Mater. Process. Technol.
,
121
, pp.
226
233
. 0924-0136
15.
Chang
,
D.
, and
Wang
,
J.
, 2006, “
Optimized Upper Bound Analysis of Axisymmetric Extrusion Using Spherical Velocity Field
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
4
10
.
16.
Hosford
,
W. F.
, and
Cadell
,
R. M.
, 1983,
Metal Forming Mechanics and Metallurgy
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
143
149
.
17.
Jaworski
,
J. A.
, and
Schmid
,
S. R.
, 1999, “
Survivability of Laminated Polymer Lubricant Films in Ironing
,”
Tribol. Trans.
1040-2004,
42
, pp.
32
38
.
18.
Wilson
,
W. R. D.
, and
Halliday
,
K.
, 1977, “
An Inlet Zone Analysis for the Lubrication of a Drawing Process by Rigid-Plastic Solid
,”
Wear
0043-1648,
42
, pp.
135
148
.
19.
Rao
,
S. S.
, 1996,
Engineering Optimization Theory & Practice
,3rd ed.,
Wiley
,
New York
, pp.
368
376
.
20.
Drucker
,
D. C.
,
Prager
,
W.
, and
Greenberg
,
H. J.
, 1952, “
Extended Limit Design Theorems for Continuous Media
,”
Q. Appl. Math.
0033-569X,
9
, pp.
381
389
.
You do not currently have access to this content.