Abstract

This paper presents a methodology for the optimal design of the measurement point layout for 3D workpiece localization in the presence of part surface errors and measurement errors. A number of frame-invariant norms of the infinitesimal rigid body displacement, two of which give Riemann metrics on the Euclidean group, are defined to quantify the localization accuracy required by manufacturing processes. Then, two types of indices, both frame invariant and scale invariant, are derived to characterize the sensitivities of the accuracy measures to the sampling errors at the measurement points. With a dense set of discrete points on the workpiece datum surfaces predefined as candidates for measurement, planning of probing points to accurately recover part location is modeled as a combinatorial problem focusing on minimizing the accuracy sensitivity index. It is shown that if the number of measurement points is large enough, there is no need to optimize their positions, and that if the systematic error component of the sampled geometric errors is not negligible as compared with the random error component, addition of measurement points offers no guarantee of a smaller upper bound of the localization error. A heuristic floating forward search algorithm is employed to efficiently find a near-optimal solution. Two relevant problems of sensor placement optimization for geometric imperfection diagnosis and fixture fault diagnosis are also briefly revisited in the same framework. Examples are given to illustrate the effectiveness of the proposed design criteria and algorithm.

1.
Gunnarsson
,
K. T.
, and
Prinz
,
F. B.
, 1987, “
CAD Model Based Localization of Parts in Manufacturing
,”
Computer
,
20
(
8
), pp.
66
74
. 0018-9162
2.
Hong
,
J. W.
, and
Tan
,
X. L.
, 1990, “
Method and Apparatus for Determining Position and Orientation of Mechanical Objects
,” U.S. Patent No. 5208763.
3.
Li
,
Z. X.
,
Gou
,
J. B.
, and
Chu
,
Y. X.
, 1998, “
Geometric Algorithms for Workpiece Localization
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
6
), pp.
864
878
.
4.
Chakraborty
,
D.
, and
De Meter
,
E. C.
, 2001, “
Part Localization Algorithms for an Intelligent Fixturing System Part 1: System Description and Algorithm Development
,”
J. Manuf. Syst.
0278-6125,
20
(
2
), pp.
124
134
.
5.
Wu
,
C. Y.
,
Neal
,
G. L.
,
De Meter
,
E. C.
,
Trethewey
,
M. W.
, and
Rao
,
S. B.
, 1999, “
Global Workpiece Positioning System (GWPS) Part 1: Concept and Development of a Laser Probe Based System
,”
J. Manuf. Syst.
0278-6125,
18
(
6
), pp.
431
446
.
6.
Tucker
,
T. M.
, and
Kurfess
,
T. R.
, 2003, “
Newton Methods for Parametric Surface Registration: Theory and Experimental Validation
,”
Comput.-Aided Des.
0010-4485,
35
(
1
), pp.
107
120
.
7.
Zhu
,
L. M.
,
Xiong
,
Z. H.
,
Ding
,
H.
, and
Xiong
,
Y. L.
, 2004, “
A Distance Function Based Approach for Localization and Profile Error Evaluation of Complex Surface
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
542
554
.
8.
Sahoo
,
K. C.
, and
Menq
,
C. H.
, 1991, “
Localization of 3-D Objects Having Complex Sculptured Surfaces Using Tactile Sensing and Surface Description
,”
ASME J. Eng. Ind.
0022-0817,
113
(
1
), pp.
85
92
.
9.
Menq
,
C. H.
,
Yau
,
H.
, and
Lai
,
G.
, 1992, “
Automated Precision Measurement of Surface Profile in CAD-Directed Inspection
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
2
), pp.
268
278
.
10.
Yan
,
Z. C.
, and
Menq
,
C. H.
, 1999, “
Uncertainty Analysis and Variation Reduction of Three Dimensional Coordinate Metrology
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
1199
1261
. 0890-6955
11.
H. T.
Yau
, 1998, “
Uncertainty Analysis in Geometric Best Fit
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
1323
1342
.
12.
Wang
,
M. Y.
, and
Pelinescu
,
D.
, 2001, “
Optimizing Fixture Layout in a Point Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
312
323
.
13.
Wang
,
M. Y.
, 2000, “
An Optimum Design for 3-D Fixture Synthesis in a Point Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
839
846
.
14.
Wang
,
M. Y.
, 2002, “
Characterizations of Localization Accuracy of Fixtures
,”
IEEE Trans. Rob. Autom.
,
18
(
6
), pp.
976
981
. 1042-296X
15.
Weill
,
R.
,
Dar-El
,
L.
, and
Laloum
,
M.
, 1991, “
The Influence of Fixture Positioning Errors on the Geometric Accuracy of Mechanical Parts
,”
Proceedings of the CIRP Conference on Production Engineering and Manufacturing Science
, Tianjin, China, pp.
215
225
.
16.
Soderberg
,
R.
, and
Carlson
,
J.
, 1999, “
Locating Scheme Analysis for Robust Assembly and Fixture Design
,”
Proceedings of the ASME Design for Manufacture Conference
, Las Vegas, NV.
17.
Wang
,
M. Y.
, 2002, “
Tolerance Analysis for Fixture Layout Design
,”
Assem. Autom.
0144-5154,
22
(
2
), pp.
153
162
.
18.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1997, “
A Variational Method of Robust Fixture Configuration Design for 3D Workpiece
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
593
602
.
19.
Kim
,
P. S.
, and
Ding
,
Y.
, 2004, “
Optimal Design of Fixture Layout in Multistation Assembly Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
1
(
2
), pp.
133
145
. 1545-5955
20.
Xiong
,
Z. H.
,
Wang
,
M. Y.
, and
Li
,
Z. X.
, 2004, “
A Near-Optimal Probing Strategy for Workpiece Localization
,”
IEEE Trans. Rob. Autom.
,
20
(
4
), pp.
668
676
. 1546-1904
21.
Fedorov
,
V. V.
, 1972,
Theory of Optimal Experiments
,
Academic
,
New York
.
22.
Murray
,
R. M.
,
Li
,
Z. X.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
23.
Chu
,
Y. X.
,
Gou
,
J. B.
, and
Li
,
Z. X.
, 1999, “
Workpiece Localization Algorithms: Performance and Reliability Analysis
,”
J. Manuf. Syst.
0278-6125,
18
(
2
), pp.
113
126
.
24.
Phoomboplab
,
T.
, and
Ceglarek
,
D.
, 2008, “
Process Yield Improvement Through Optimum Design of Fixture Layouts in 3D Multistation Assembly Systems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
6
), p.
061005
.
25.
Wang
,
M. Y.
, and
Nagarkar
,
S. R.
, 1999, “
Locator and Sensor Placement for Automated Coordinate Checking Fixtures
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
709
719
.
26.
Liu
,
C. Q.
,
Ding
,
Y.
, and
Chen
,
Y.
, 2005, “
Optimal Coordinate Sensor Placements for Estimating Mean and Variance Components of Variation Sources
,”
IIE Trans.
0740-817X,
37
(
9
), pp.
877
889
.
27.
Khan
,
A.
,
Ceglarek
,
D.
,
Shi
,
J.
,
Ni
,
J.
, and
Woo
,
T. C.
, 1999, “
Sensor Optimization for Fault Diagnosis in Single Fixture System: A Methodology
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
109
121
.
28.
Khan
,
A.
,
Ceglarek
,
D.
, and
Ni
,
J.
, 1998, “
Sensor Location Optimization for Fault Diagnosis in Multi-Fixture Assembly Systems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
781
792
.
29.
Khan
,
A.
, and
Ceglarek
,
D.
, 2000, “
Sensor Optimization for Fault Diagnosis in Multi-Fixture Assembly Systems With Distributed Sensing
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
215
226
.
30.
Camelio
,
J.
,
Hu
,
S. J.
, and
Yim
,
H.
, 2005, “
Sensor Placement for Effective Diagnosis of Multiple Faults in Fixturing of Compliant Parts
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
1
), pp.
68
74
.
31.
Ding
,
Y.
,
Kim
,
P.
,
Ceglarek
,
D.
, and
Jin
,
J.
, 2003, “
Optimal Sensor Distribution for Variation Diagnosis for Multi-Station Assembly Processes
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
, pp.
543
556
.
32.
Lin
,
Q.
, and
Burdick
,
J. W.
, 2000, “
Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies
,”
Int. J. Robot. Res.
0278-3649,
19
, pp.
612
625
.
33.
Fang
,
K. T.
, 1989,
Applied Multivariate Statistical Analysis
,
East China Normal University Press
,
Shanghai
.
34.
Nguyen
,
N. K.
, and
Miller
,
A. J.
, 1992, “
A Review of Some Exchange Algorithms for Constructing Discrete D-Optimal Designs
,”
Comput. Stat. Data Anal.
0167-9473,
14
, pp.
489
498
.
35.
Kudo
,
M.
, and
Sklansky
,
J.
, 2000, “
Comparison of Algorithms That Select Features for Pattern Classifiers
,”
Pattern Recogn.
0031-3203,
33
(
1
), pp.
25
41
.
36.
Nahvi
,
A.
, and
Hollerbach
,
J. M.
, 1996, “
The Noise Amplification Index for Optimal Pose Selection in Robot Calibration
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
647
654
.
37.
Choudhuri
,
S. A.
, and
De Meter
,
E. C.
, 1999, “
Tolerance Analysis of Manufacturing Fixture Locators
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
2
), pp.
273
281
.
38.
Rong
,
Y.
,
Hu
,
W.
,
Kang
,
Y.
,
Zhang
,
Y.
, and
Yen
,
D. W.
, 2001, “
Locating Error Analysis and Tolerance Assignment for Computer-Aided Fixture Design
,”
Int. J. Prod. Res.
0020-7543,
39
(
15
), pp.
3529
3545
.
39.
Zhu
,
L. M.
and
Ding
,
H.
, 2004, “
A Unified Approach for Least-Squares Surface Fitting
,”
Sci. China, Ser. G
,
47
(
S1
), pp.
72
78
. 0020-7543
You do not currently have access to this content.